K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

Ta luôn có :

\(\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\ge0\forall a,b\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\)

\(\Leftrightarrow2\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{2}{\sqrt{ab}}+\frac{1}{a}+\frac{1}{b}\)

\(\Leftrightarrow\frac{2\left(a+b\right)}{ab}\ge\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\right)^2\)

\(\Leftrightarrow\sqrt{\frac{2\left(a+b\right)}{ab}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế :

\(\sqrt{2}\left(\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\right)\)

\(\ge2\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\)

\(\Leftrightarrow\sqrt{\frac{a+b}{ab}}+\sqrt{\frac{b+c}{bc}}+\sqrt{\frac{a+c}{ac}}\ge\sqrt{\frac{2}{a}}+\sqrt{\frac{2}{b}}+\sqrt{\frac{2}{c}}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)

Chúc bạn học tốt !!!

30 tháng 9 2019

Đặt \(\frac{1}{\sqrt{a}}=x,\frac{1}{\sqrt{b}}=y,\frac{1}{\sqrt{c}}\)=z

Thay vào ta có:\(\sqrt{2}\)(x+y+x)\(\le\)\(\sqrt{\left(x^2+y^2\right)}+\sqrt{x^2+z^2}+\sqrt{\left(y^2+z^2\right)}\)

Ta có bất đẳng thức sau A: (m2+n2)(p2+q2)\(\ge\)(mp+nq)2 dễ dàng chứng mình bằng cách khai triển

áp dụng bdt A với m=x,n=z,p=\(\sqrt{2}\).q=\(\sqrt{2}\) ta được

 \(\sqrt{\frac{\left(x^2+z^2\right)\left(\sqrt{2}^2+\sqrt{2}^2\right)}{4}}\ge\sqrt{\left(x\sqrt{2}+z\sqrt{2}\right)^2}\)/2=\(\frac{\sqrt{2}\left(x+y\right)}{2}\)

Tương tự với cái phần tử còn lại ta được điều cần cm

NV
14 tháng 4 2022

Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)

\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Nên ta chỉ cần chứng minh:

\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)

\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)

Nhân phá và rút gọn 2 vế:

\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)

Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

Dấu "=" xảy ra khi \(a=b=c\)

5 tháng 1 2018

\(\frac{bc+a^2}{a+b}+\frac{ac+b^2}{b+c}+\frac{ab+c^2}{a+c}\ge\)a+b+c

<=>\(\frac{bc+a^2}{a+b}-a+\frac{ac+b^2}{b+c}-b+\frac{ab+c^2}{a+c}-c\ge0\)

<=>\(\frac{b\left(c-a\right)}{a+b}+\frac{c\left(a-b\right)}{b+c}+\frac{a\left(b-c\right)}{a+c}\ge0\)

<=>\(\frac{b\left(b+c\right)\left(a+c\right)\left(a-c\right)}{\left(a+b\right)\left(c+c\right)\left(a+c\right)}\)+\(\frac{c\left(a+c\right)\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a\left(a+b\right)\left(b-c\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

<=>\(\frac{b^2c^2-b^2a^2+bc^3-a^2bc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^3c-ab^2c+c^2a^2-b^2c^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^2b^2-a^2c^2+ab^3-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

<=>\(\frac{bc^3+a^3c+ab^3-a^2bc-ab^2c-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

<=>\(\frac{2bc^3+2a^3c+2ab^3-2a^2bc-2ab^2c-2abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)>=0

<=>\(\frac{bc\left(c-a\right)^2+ac\left(a-b\right)^2+ab\left(b-c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(đung voi moi a,b,c >0)

Dấu ''='' xay ra khi a=b=c

6 tháng 7 2016

Trả lời hộ mình đi

10 tháng 11 2020

Áp dụng bất đẳng thức Bunyakovsky, ta được: \(\Sigma_{cyc}\frac{ab}{a^2+bc+ca}=\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)}\le\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Ta có: \(\Sigma_{cyc}\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}=\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2.a\sqrt{bc}.b\sqrt{bc}+2.c\sqrt{ca}.b\sqrt{ca}}{\left(ab+bc+ca\right)^2}\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+a^2bc+b^3c+c^3a+ab^2c}{\left(ab+bc+ca\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)^2}=\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Đẳng thức xảy ra khi a = b = c

NV
14 tháng 5 2020

Áp dụng BĐT Bunhiacopxki:

\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)

\(\Rightarrow\frac{ab}{a^2+bc+ca}\le\frac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)

Tương tự: \(\frac{bc}{b^2+ca+ab}\le\frac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\) ; \(\frac{ac}{c^2+ab+bc}\le\frac{ac\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)

Cộng vế với vế:

\(VT\le\frac{ab^3+bc^3+ca^3+2a^2bc+2ab^2c+2abc^2}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+2.a\sqrt{ab}.c\sqrt{ab}+2a\sqrt{bc}.b\sqrt{bc}+2c\sqrt{ac}.b\sqrt{ac}}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{ab^3+bc^3+ca^3+a^3b+abc^2+b^3c+a^2bc+ac^3+ab^2c}{\left(ab+bc+ca\right)}=\frac{\left(ab+bc+ca\right)\left(a^2+b^2+c^2\right)}{\left(ab+bc+ca\right)^2}\)

\(VT\le\frac{a^2+b^2+c^2}{ab+bc+ca}\)

Dấu "=" xảy ra khi \(a=b=c\)

9 tháng 2 2020

\(\frac{a^3}{bc}+\frac{b^3}{ca}=\frac{a^4}{abc}+\frac{b^4}{abc}\ge\frac{\left(a^2+b^2\right)^2}{2abc}\ge\frac{2ab\left(a^2+b^2\right)}{2abc}=\frac{a^2+b^2}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

viết các bđt tương tự rồi cộng vế theo vế là được