2.Cho a,b,c,d là các số thực dương thỏa mãn a2 + b2 + c2 = 1. Chứng minh: \(\frac{1}{b^2+c^2}+\frac{1}{c^2+a^2}+\frac{1}{a^2+b^2}\le\frac{a^3+b^3+c^3}{2abc}+3\) 1. Cho các số dương a,b,c thỏa mãn a+b+c=1. Chứng minh \(\frac{a}{1+b-a}+\frac{b}{1+c-b}+\frac{c}{1+a-c}\ge1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Hi there.
My name is Lan Anh. I'm very busy, and I don't have much time doing housework though I really love it. After returning home from a hard-working day, the first thing that I do is to tidy my room. I fancy cleaning my living space as a way to keep fit and turn my room into a nice place to live. every girl, I'm interested in doing some flower arrangement as a vase of fresh flower makes me feel relaxed every time I look at. Though I enjoy cleaning my room, I hate scrubbing the kitchen floor most just because my hands become rough and dry after doing this.

Đề ko rõ lắm bạn ạ,điểm M,N nó phải như thế nào thì mới chứng minh \(\overrightarrow{MN}=\overrightarrow{BA}\)được chứ bạn


Đặt \(x^2=a\ge0;y^2=b\ge0\)
Ta có BĐT phụ:\(4ab\le\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\left(true\right)\)
Ta có:\(\frac{4ab}{\left(a+b\right)^2}+\frac{a}{b}+\frac{b}{a}\ge\frac{\left(a+b\right)^2}{\left(a+b\right)^2}+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=3\) ( BĐT AM-GM )
Ta có đpcm
Câu 2:
\(\frac{a^2b}{2a^3+b^3}-\frac{1}{3}+1-\frac{a^2+2ab}{2a^2+b^2}\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{2a^2+b^2}-\frac{\left(a-b\right)^2\left(2a+b\right)}{3\left(2a^3+b^3\right)}\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{2a^2+b^2}-\frac{\left(2a+b\right)}{3\left(2a^3+b^3\right)}\right]\ge0\)
\(\Leftrightarrow\frac{2\left(a-b\right)^4\left(a+b\right)}{3\left(2a^2+b^2\right)\left(2a^3+b^3\right)}\ge0\left(ok!\right)\)
Em tính/ quy đồng/ phân tích thành nhân tử sai chỗ nào thì chị tự check nhá:)

1. is rising ---> rises
2. will ---> are going to drive
3. use--->used
4.say--->said
5.helping--->to help

Chả ai đồng ý 1 (kí) + 1 (yến) = 2 (tạ).
chắc như vậy là hiểu r nhỉ
uy nhiên, nếu xét theo quan điểm của Toán học hiện đại, việc chứng minh “1 + 1 = 2” là thừa, vì nó không có bất kỳ một ý nghĩa nào nữa, thậm chí, người ta còn có thể chứng minh được rằng “1 + 1” không bằng 2.
Xin trình bày với các bạn một cách thức xây dựng mà ở đây “1 + 1” sẽ không bằng 2 nữa, mà bằng một cái gì đó tùy ý theo đúng quan điểm của Toán.

<=> \(\hept{\begin{cases}3x=2a+2\\x-y=a\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2a+2}{3}\\y=\frac{2-a}{3}\end{cases}}}\)
theo đk: \(x< y\Leftrightarrow\frac{2a+2}{3}< \frac{2-a}{3}\Leftrightarrow2a+2< 2-a\Leftrightarrow3a< 0\Leftrightarrow a< 0\)
\(sigma\frac{a}{1+b-a}=sigma\frac{a^2}{a+ab-a^2}\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{\left(a+b+c\right)^2}{3}-\frac{\left(a+b+c\right)^2}{3}}=1\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\frac{1}{b^2+c^2}=\frac{1}{1-a^2}=1+\frac{a^2}{b^2+c^2}\le1+\frac{a^2}{2bc}\)
Tương tự cộng lại quy đồng ta có đpcm
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)