Có ai ngủ chưa ? Nói chuyện cho vui
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi đánh giá năng lực



\(S=1+3+3^2+...+3^{99}\)
\(\Rightarrow3S=3+3^2+...+3^{100}\)
\(\Rightarrow3S-S=\left(3+3^2+...+3^{100}\right)-\left(1+3+..+3^{99}\right)\)
\(\Rightarrow2S=3^{100}-1\)
\(\Rightarrow S=\frac{3^{100}-1}{2}\)
S=\(1+3+3^2+3^3+...+3^{99}\)
3S=\(3+3^2+3^3+3^4+...+3^{100}\)
3S-S hay 2S=\(3^{100}-3\)
S=\(\left(3^{100}-3\right):2\)
Hok tốt!!!

a) TXĐ: R
📷
y’>0 trên khoảng (-∞; -2)và (0; +∞)
y'<0 trên khoảng (-2; 0)
yCĐ=y(-2)=0; yCT=y(0)=-4
📷
y”=6x+6=6(x+1)=0 <=> x = -1
Bảng xét dấu y’’
X-∞-1+∞Y’’–0+Đồ thịLồiđiểm uốn u(-1; -2)lõm
Hàm số lồi trên khoảng (-∞; -1)
Hàm số lõm trên khoảng -1; +∞)
Hàm số có 1 điểm uốn u(-1; -2)
Bảng biến thiên:
📷
Đồ thị
Đi qua điểm (1; 0) và (-3; -4)
b) Hàm số y=x3+3x2-4 có điểm uốn u(-1; -2)
Ta có: y’=3x2-4 ; y’(-1) = -3
Phương trình tiếp tuyến tại điểm uốn u(-1; -2) có dạng
y-y0=y'(x0)(x-x0)
<=> y+2=-3(x+1)
<=> y=-3x-5
Vậy phương trình tiếp tuyến tại điểm uốn là: y = -3x – 5.
📷
c) Đồ thị nhận I(-1; -2) là tâm đối xứng khi và chỉ khi:
f(x0+x)+f(x0-x)=2y0 với ∀x
<=> f(x-1)+f(-x-1)=-4 ∀x
<=> (x-1)3+3(x-1)2-4+(-1-x)3+3(-1-x)2-4 ∀x
<=> x3-3x2+3x-1+3x2-6x+3-5-3x-3x2-x3+3+6x+3x2-4=-4 ∀x
<=>-4=4 ∀x
=> I(-1; -2) là tâm đối xứng của đồ thị.
bạn vào chính câu hỏi này của bạn trong bingbe xem
bẹng ơi bẹng lớp mấy zo