K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2017

\(\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\)

Do \(x>1\) nên \(x-1>0;\frac{1}{x-1}>0\) Áp dụng bất đẳng thức Cauchy ta có :

\(x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right).\frac{1}{x-1}}=2\)

\(\Rightarrow x-1+\frac{1}{x-1}+2\ge4\) hay \(\frac{x^2}{x-1}\ge4\) có GTNN là 4

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

26 tháng 8 2017

Ta có \(\frac{x^2}{x-1}=\frac{x^2-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)+2. Áp dụng cosi cho 2 số x+1 và 1/x-1 ta có x+1+1/x-1\(\ge\)2\(\sqrt{\left(x-1\right)\frac{1}{x-1}}=1\), suy ra biểu thức \(\ge\)3, vậy giá trị nn =3 khi x-1=1/x-1, đến đó bn giải tìm x nha

26 tháng 8 2017

Do a;b;c > 0 ; Áp dụng bất đẳng thức Cauchy - Schwarz ta có :

\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ac}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\) (đpcm)

26 tháng 8 2017

a; b; c; d Có điều kiện gì không bạn?

26 tháng 8 2017

Dùng Bunyakovsky , có :

\(\left(1+1+1+1\right)\left(a^2+b^2+c^2+d^2\right)\ge\left(a+b+c+d\right)^2=4\)

\(\left(1+1+1+1\right)\left(a^2+b^2+c^2+d^2\right)\ge4\)

\(\left(a^2+b^2+c^2+d^2\right)\ge1\)

26 tháng 8 2017

Áp dụng bất đẳng thức Bunhiacopxki ta có :

\(\left(1^2+1^2\right)\left[\left(a^2\right)^2+\left(b^2\right)^2\right]\ge\left(a^2.1+b^2.1\right)\)

\(\Leftrightarrow2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\)(1)

Áp dụng bất đẳng thức Bunhiacopxki lần nữa ta có :

\(\left(1^2+1^2\right)\left(a^2+b^2\right)\ge\left(a.1+b.1\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\) (2)

Từ (1) và (2) \(\Rightarrow a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{2^2}{2}=2\)(đpcm)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

26 tháng 8 2017

Có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

<=> \(2x^2+2y^2\ge\left(x+y\right)^2=x^2+2xy+y^2\)

<=> \(x^2-2xy+y^2\ge0\) (đúng)

Vậy \(a^4+b^4\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

dấu "=" xảy ra <=> a = b = 1

26 tháng 8 2017

Bđt thức phụ : \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2=a^2+2ab+b^2\Leftrightarrow a^2-2ab+b^2=\left(a-b\right)^2\ge0\)(đúng)

Áp dụng ta được :

\(\left(a+\frac{1}{a}\right)^2+\left(b+\frac{1}{b}\right)^2\ge\frac{\left(a+\frac{1}{a}+b+\frac{1}{b}\right)^2}{2}\ge\frac{\left(1+\frac{4}{a+b}\right)^2}{2}=\frac{25}{2}\)(đpcm)

15 tháng 3 2020

hack brain ????

26 tháng 8 2017

Ta có : \(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2}{x-y}=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

Vì \(x>y\) nên \(\hept{\begin{cases}x-y>0\\\frac{2}{x-y}>0\end{cases}}\) Áp dụng bất đẳng thức Cauchy - Schwarz ta có :

\(x-y+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\) (đpcm)

26 tháng 8 2017

\(\frac{x^2+y^2}{x-y}=\frac{x^2-2xy+y^2+2}{x-y}\)

Vì theo giả thiết, \(xy=1\)nên \(2xy=2\), em dùng phương pháp Thêm Bớt

\(\frac{x^2-2xy+y^2+2}{x-y}=\frac{x-y^2+2}{x-y}\)

\(=x-y+\frac{2}{x-y}\)

Áp dụng BDT Cô-si cho 2 số dương là : \(x-y\)và \(\frac{2}{x-y}\) nên ta có:

\(x-y+\frac{2}{x-y}=2\sqrt{2}\)

Vậy: \(GTNN=2\sqrt{2}\Leftrightarrow x-y=\frac{2}{x-y}\)