K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2020

a) Điều kiện: \(n-4\ne0\Leftrightarrow n\ne4\)

Vậy \(\hept{\begin{cases}n\ne4\\n\inℤ\end{cases}}\)thì A là phân số

b) Với \(n\inℤ\):Để \(A\inℤ\) 

\(\Leftrightarrow n-4\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Leftrightarrow n\in\left\{-3;3;7;11\right\}\)

Kết hợp ĐKXĐ .Vậy \(n\in\left\{-3;3;7;11\right\}\)thì \(A\inℤ\)

c)Với n=19 (thỏa mãn điều kiện) thì:

A=\(\frac{7}{19-4}=\frac{7}{15}\)

Với n=-17(thỏa mãn điều kiện) thì:

A=\(\frac{7}{-17-4}=\frac{7}{-21}=-\frac{1}{3}\)

23 tháng 1 2020

a,\(\frac{10x125x4x25x8}{0,8x0,04x1,25x25+0,6524+0,3476}\)

=\(\frac{10x\left(125x8\right)x\left(4x25\right)}{\left(0,8x1,25\right)x\left(0,04x25\right)+\left(0,6524+0,3476\right)}\)

=\(\frac{10x1000x100}{1x1+1}\)

=\(\frac{1000000}{2}\)=\(500000\)

23 tháng 1 2020

b,\(\frac{3}{4}\)x X + 1,25 x X + 50% x X = 12,5 x 0,8

0,75 x X + 1,25 x X + 0,5 x X = 10

(0,75 + 1,25 + 0,5) x X = 10

2,5 x X = 10

       X = 10: 2,5 =4

22 tháng 1 2020

A E B D C H

Ta có \(\Delta ABC\) cân ở A

=> AB = AC

và \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Lại có \(\hept{\begin{cases}\widehat{CBD}=\widehat{ABD}\\\widehat{BCE}=\widehat{ECA}\end{cases}}\left(gt\right)\)

=> \(\widehat{ABC}-\widehat{CBD}=\widehat{ACB}-\widehat{BCE}\)

=> \(\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta AEC\) và \(\Delta ADB\)  có

\(\widehat{ABD}=\widehat{ACE}\)   (cmt

AC= AB  (cmt)

\(\widehat{A}\)  chung

=> \(\Delta AEC\)\(\Delta ADB\)  (g-c-g)

=> AE = AD   ( 2 cạnh tương ứng)

=> \(\Delta ADE\)  cân tại A

=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ABC}=\widehat{AED}\)

Mà 2 góc này ở vị trí đồng vị => DE  // BC

Câu b có sai đề ko v bạn bài cho CE vuông góc vs AB r mà

Học tốt

22 tháng 1 2020

a=2;b=5

22 tháng 1 2020

Đề sai nhá

22 tháng 1 2020

                                                                         Bài giải

\(S=1+2+2^2+...+2^{2005}\)

\(2S=2+2^2+2^3+...+2^{2006}\)

\(2S-S=S=2^{2006}-1=2^{2004}\cdot4-1< 5\cdot2^{2004}\)

\(\Rightarrow\text{ }S< 5\cdot2^{2004}\)

22 tháng 1 2020

                                                                         Bài giải

\(S=1+2+2^2+...+2^{2005}\)

\(2S=2+2^2+2^3+...+2^{2006}\)

\(2S-S=S=2^{2006}-1=2^{2004}\cdot4-1< 5\cdot2^{2004}\)

\(\Rightarrow\text{ }S< 5\cdot2^{2004}\)

22 tháng 1 2020

Áp dụng bất đẳng thức AM - GM ta có :

\(a-\frac{a^2}{a+b^2}=\frac{ab^2}{a+b^2}\le\frac{ab^2}{2b\sqrt{a}}=\frac{b\sqrt{a}}{2}\)

Tương tự cho các BĐT còn lai cũng có : 

\(b-\frac{b^2}{b+c^2}\le\frac{c\sqrt{b}}{2};c-\frac{c^2}{c+a^2}\le\frac{a\sqrt{c}}{2}\)

Cộng theo vế các BĐT trên :
\(\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge3-\frac{1}{2}\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)\)

\(\ge3-\frac{1}{2}\sqrt{\left(a+b+c\right)\left(ab+bc+ca\right)}\)

\(\ge3-\frac{1}{2}\sqrt{\left(a+b+c\right).\frac{\left(a+b+c\right)^2}{3}}=3-\frac{3}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

Chúc bạn học tốt !!!

22 tháng 1 2020

Áp dụng BĐT Cô-si cho 3 số dương ta có:

\(\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(\sqrt[3]{\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)}\right)^4\)

Ta chứng minh: \(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\left(1+\frac{3}{2+abc}\right)^3\left(1\right)\)

Theo BĐT Cô - si ta có:

\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\)

\(\ge1+\frac{3}{\sqrt[3]{abc}}+\frac{3}{\sqrt[3]{\left(abc\right)^2}}+\frac{1}{abc}=\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\ge\left(1+\frac{3}{2+abc}\right)^3\)

(Vì \(abc+2=abc+1+1\ge3\sqrt[3]{abc}\))

Vậy \(\left(1\right)\) được chứng minh \(\Rightarrow BĐT\) đúng \(\forall a,b,c>0\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)

22 tháng 1 2020

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow VT\ge3\sqrt[3]{\left[\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\right]^4}\)

\(\Rightarrow VT\ge3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\left(1\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\\\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge3\sqrt[3]{\frac{1}{a^2b^2c^2}}\end{cases}}\)

\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge1+3\sqrt[3]{\frac{1}{abc}}\)

\(+3\sqrt[3]{\frac{1}{a^2b^2c^2}}+\frac{1}{abc}\)

\(\Rightarrow1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}\ge\left(1+\frac{1}{\sqrt[3]{abc}}\right)^3\)

\(\Rightarrow3\left(\sqrt[3]{1+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{abc}}\right)^4\)

\(\ge3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\)

\(\left(2\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow\sqrt[3]{abc}\le\frac{abc+1+1}{3}=\frac{abc+2}{3}\)

\(\Rightarrow1+\frac{1}{\sqrt[3]{abc}}\ge1+\frac{3}{abc+2}\)

\(\Rightarrow3\left(1+\frac{1}{\sqrt[3]{abc}}\right)^4\ge3\left(1+\frac{3}{abc+2}\right)^4\left(3\right)\)

Từ (1) , (2) và (3) 

\(\Rightarrow VT\ge3\left(1+\frac{3}{abc+2}\right)^4\)

\(\Leftrightarrow\left(1+\frac{1}{a}\right)^4+\left(1+\frac{1}{b}\right)^4+\left(1+\frac{1}{c}\right)^4\ge3\left(1+\frac{3}{2+abc}\right)^4\left(đpcm\right)\)

Chúc bạn học tốt !!!