Cho tam giác ABC vuông tại A.Gọi I là trung điểm các đường phân giác trong.Biết AB = 5cm,IC = 6cm.Tính BC?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đề sai . Với m = n = 1 thì
\(VT-VP=\left|1-\sqrt{2}\right|-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{2}-1-\frac{\sqrt{3}-\sqrt{2}}{3-2}\)
\(=\sqrt{2}-1-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}-\left(1+\sqrt{3}\right)\)
Dễ thấy \(2\sqrt{2}>1+\sqrt{3}\)Nên VT - VP > 0
=> VT > VP
=> Đề sai :3

Vì \(0< x< 1\Rightarrow x^{n-1}< 1\)
\(\Rightarrow1-x^{n-1}>0\)
Xét hiệu \(x-x^n=x\left(1-x^{n-1}\right)>0\)
Nên \(x>x^n\left(đpcm\right)\)
Sau này có gì cứ nhờ Incursion_03 nha. A cũng nhờ bạn ấy suốt ah :P

\(C,\hept{\begin{cases}\left|x-1\right|+\left|y-2\right|=1\\\left|x-1\right|+3y=3\left(#\right)\end{cases}}\)
\(\Rightarrow3y-\left|y-2\right|=2\)(1)
*Nếu y > 2 thì
\(\left(1\right)\Leftrightarrow3y-y+2=2\)
\(\Leftrightarrow y=0\)(Loại do ko tm KĐX)
*Nếu y < 2 thì
\(\left(1\right)\Leftrightarrow3y-2+y=2\)
\(\Leftrightarrow y=1\)(Tm KĐX)
Thay y = 1 vào (#) được \(\left|x-1\right|+3=3\)
\(\Leftrightarrow x=1\)
Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
\(A,ĐKXĐ:x\left(y+1\right)>0\)
\(\hept{\begin{cases}x+y=5\left(1\right)\\\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}=2\left(2\right)\end{cases}}\)
Giải (2)
Có bđt \(\frac{a}{b}+\frac{b}{a}\ge2\left(a,b>0\right)\)
Nên \(\sqrt{\frac{x}{y+1}}+\sqrt{\frac{y+1}{x}}\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x=y+1\)
Thế x = y + 1 vảo pt (1) được
\(y+1+y=5\)
\(\Leftrightarrow y=2\)
\(\Rightarrow x=2+1=3\)
Thấy x = 3 ; y = 2 thỏa mãn ĐKXĐ
Vậy hệ có ngihiemej \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)



\(Giải\)
\(\frac{|2x-1|}{x^2-3x-4}< \frac{1}{2}\Leftrightarrow\frac{|2x-1|}{\left(x-4\right)\left(x+1\right)}< \frac{1}{2}\)
\(\Leftrightarrow2|2x-1|< \left(x-4\right)\left(x+1\right)\)
\(+,x\ge\frac{1}{2}\Rightarrow2|2x-1|=4x-2\)
\(\Rightarrow x^2-3x-4-\left(4x-2\right)>0\Leftrightarrow x^2-3x-4-4x+2>0\)
\(\Leftrightarrow x^2-7x-2>0\)\(\Leftrightarrow x^2-7x+6>8\Leftrightarrow\left(x-1\right)\left(x-6\right)>8\)
\(+,x< \frac{1}{2}\Rightarrow2|2x-1|=2-4x\)
\(\Rightarrow x^2-3x-4-2+4x>0\Leftrightarrow x^2+x-6>0\Leftrightarrow\left(x+3\right)\left(x-2\right)>0\)
\(..................\left(tựlmtiep\right)\)
bn ơi bn chỉ đc nhân chéo khi nó dương bn đã bt nó dương đâu mà đc phép nhân chéo

Sửa đề thành \(VT\le1\)
a,b,c là các số thức dương nên theo cô si:
\(a^3+b^2+c\ge3\sqrt[3]{a^3b^2c}\ge3\)
Tương tự hai BĐT còn lại.Thay vào VT,ta có:
\(VT\le\frac{a}{3}+\frac{b}{3}+\frac{c}{3}=\frac{a+b+c}{3}=1^{\left(đpcm\right)}\) (không chắc nha)
tth ơi.đề ko sai.đề như bạn thì quá đơn giản rồi.
có cần ko.mik ans hộ cho?