K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2020

Tự nhiên nó hiện ra à?

10 tháng 1 2020

ngu quá

10 tháng 1 2020

Ta có: \(a^6-1=\left(a^3+1\right)\left(a^3-1\right)\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)

* a không chia hết cho 7 nên a có 6 dạng: 7k + 1; 7k + 2; 7k + 3; 7k + 4; 7k + 5; 7k + 6

+) a = 7k + 1

\(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(7k+1-1\right)\left(a^2+a+1\right)\)

\(=7k\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 2

\(\Rightarrow a^2=\left(7k+2\right)^2=49k^2+28k+4\)

\(\Rightarrow a^2+a+1=\left(49k^2+28k+4+7k+2+1\right)\)

\(=49k^2+35k+7⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 3

\(\Rightarrow a^2=\left(7k+3\right)^2=49k^2+42k+9\)

\(\Rightarrow a^2+a+1=\left(49k^2+42k+9-7k-3+1\right)\)

\(=49k^2+35k+7⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 4

\(\Rightarrow a^2=\left(7k+4\right)^2=49k^2+56k+16\)

\(\Rightarrow a^2+a+1=\left(49k^2+56k+16+7k+4+1\right)\)

\(\Rightarrow a^2+a+1=\left(49k^2+63k+21\right)⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 5

\(\Rightarrow a^2=\left(7k+5\right)^2=49k^2+70k+25\)

\(\Rightarrow a^2-a+1=\left(49k^2+70k+25-7k-5+1\right)\)

\(=\left(49k^2+63k+21\right)⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

+) a = 7k + 6

\(\Rightarrow a^2=\left(7k+6\right)^2=49k^2+84k+36\)

\(\Rightarrow a^2+a+1=\left(49k^2+84k+36+7k+5+1\right)\)

\(=49k^2+91k+42⋮7\)

Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)

Vậy \(a^6-1⋮7\)với mọi a không là bội của 7

10 tháng 1 2020

Áp dụng BĐT Cauchy: \(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)\)

\(=\left[\left(a^2+\frac{1}{4}\right)+b+\frac{1}{2}\right]\left[\left(b^2+\frac{1}{4}\right)+a+\frac{1}{2}\right]\)

\(\ge\left(a+b+\frac{1}{2}\right)^2\) (Vì áp dụng BĐT Cauchy: \(a^2+\frac{1}{4}\ge2\sqrt{a^2.\frac{1}{4}}=a;b^2+\frac{1}{4}\ge b\))

Vậy ta chứng minh: \(\left(a+b+\frac{1}{2}\right)^2\ge\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)

Ta có: \(VT-VP=\left(a-b\right)^2\ge0\)

Vậy BĐT (*) đúng \(\Rightarrow\) \(\left(a^2+b+\frac{3}{4}\right)\left(b^2+a+\frac{3}{4}\right)\ge\left(a+b+\frac{1}{2}\right)^2\ge\left(2a+\frac{1}{2}\right)\left(2b+\frac{1}{2}\right)\)(đpcm)

10 tháng 1 2020

Bổ sung điều kiện a, b là các số thực dương nha! Và:

"Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)"

1 tuần nữa có nhé bạn

1 tuần nữa có nhé bạn

1 tuần nữa có nhé bạn

\(1-\frac{a^2b}{2+a^2b}\ge1-\frac{a^2b}{3.\sqrt[3]{a^2b}}\)\(\rightarrow1-3\sqrt[3]{a^4b^2}=3.\sqrt[3]{ab.ab.a^2}\rightarrow.....\)

31 tháng 5 2020

BĐT cần chứng minh tương đương với \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Áp dụng BĐT Cauchy ta có: \(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)

Do đó ta được \(\frac{a^2b}{1+a^2b}\le\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{a\sqrt[3]{ab^2}}{3}\)

Hoàn toàn tương tự ta được \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le\frac{a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}}{3}\)

Cũng theo BĐT Cauchy ta được \(\sqrt[3]{ab^2}\le\frac{a+b+b}{3}=\frac{a+2b}{3}\)

\(\Rightarrow a\sqrt[3]{ab^2}\le\frac{a\left(a+2b\right)}{3}=\frac{a^2+2ab}{3}\)

Tương tự cũng được \(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}\le\frac{\left(a+b+c\right)^2}{3}=3\)

Từ đó ta được\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c=1