K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2020

\(\frac{3}{x\sqrt{x}}=3\sqrt[3]{y^2z^2t^2}\le yz+zt+ty\)

\(\Sigma\frac{1}{x^3\left(yz+zt+ty\right)}\ge\Sigma\frac{1}{\frac{3x^3}{x\sqrt{x}}}=\Sigma\frac{\sqrt{x}}{3x^2}\ge\frac{4}{3}\sqrt[4]{\frac{\sqrt{xyzt}}{\left(xyzt\right)^2}}=\frac{4}{3}\)

15 tháng 1 2020

Câu hỏi của Ryan Park - Toán lớp 9 - Học toán với OnlineMath

Chứng minh đc:

\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\)

\(\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

\(\ge\frac{4}{3}.\sqrt[4]{\frac{1}{xyzt}}=\frac{4}{3}\)

15 tháng 1 2020

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(a^2+2c^2\right)\left(1+2\right)\ge\left(a+2c^2\right)\)

\(\Rightarrow\sqrt{a^2+2c^2}\ge\frac{a+2c}{3}\)

\(\Rightarrow\frac{\sqrt{a^2+2c^2}}{ac}\ge\frac{a+2c}{\sqrt{3ac}}=\frac{ab+2bc}{\sqrt{3abc}}\)

\(\Rightarrow\hept{\begin{cases}\frac{\sqrt{c^2+2b^2}}{bc}\ge\frac{ac+2ab}{\sqrt{3abc}}\\\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{bc+2ac}{\sqrt{abc}}\end{cases}}\)

Ta được BĐT:

\(VT\ge\frac{1}{3}.\frac{ab+2abc+ac+2ab+bc+2ac}{abc}=\frac{1}{3}.\frac{3\left(ab+bc+ac\right)}{abc}\)

\(=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=3\)

=> đpcm

P/S: Làm tắt vs đoạn này k^o chắc mấy :V

15 tháng 1 2020

Repair đề \(\Sigma_{cyc}\frac{\sqrt{2a^2+b^2}}{ab}\ge3\sqrt{3}\).Because dấu '=' xảy ra khi \(a=b=c=3\)

Không use condition của đề bài :))

Ta co:

\(VT=\sqrt{\frac{a}{b}+\frac{a}{b}+\frac{b}{a}}+\sqrt{\frac{b}{c}+\frac{b}{c}+\frac{c}{b}}+\sqrt{\frac{c}{a}+\frac{c}{a}+\frac{a}{c}}\)

\(\Rightarrow VT\ge\sqrt{3\sqrt[3]{\frac{a}{b}}}+\sqrt{3\sqrt[3]{\frac{b}{c}}}+\sqrt{3\sqrt[3]{\frac{c}{a}}}\ge3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{a}{b}}.\sqrt{3\sqrt[3]{\frac{b}{c}}.\sqrt{3\sqrt[3]{\frac{c}{a}}}}}}=3\sqrt{3}\)

equelity iff \(a=b=c=3\)

15 tháng 1 2020

Bạn tham khảo tại đây:

Câu hỏi của Ngô Ngọc Anh - Toán lớp 9 - Học toán với OnlineMath

15 tháng 1 2020

\(\text{BĐT}\Leftrightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\) (để ý giả thiết để đồng bậc 2 vế)

Giả sử \(z=min\left\{x,y,z\right\}\)

15 tháng 1 2020

Ơ quên điều kiện x, y, z là các số thực -_-

\(B\text{Đ}T\Leftrightarrow x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)

\(VT-VP=\frac{1}{2}\left[\Sigma_{cyc}\left(x^2-y^2\right)^2+\Sigma_{cyc}\left(xy-yz\right)^2\right]\ge0\)

15 tháng 3 2022

Ko đúng bằng 5 nhà ae

 

14 tháng 1 2020

Ta có \(-x\left(x+7\right)=\left(x+2\right)\left(x-2\right)\)

\(\Leftrightarrow-x^2-7x=x^2-4\)

\(\Leftrightarrow-2x^2-7x+4=0\)

\(\Leftrightarrow\left(-2x^2-8x\right)+\left(x+4\right)=0\)

\(\Leftrightarrow-2x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(1-2x\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}1-2x=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-4\end{cases}}}\)

Vậy phương trình có tập nghiệm S={-4;1/2}

14 tháng 1 2020

không chắc nhé 

a) \(x^2-6x+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6+2\sqrt{3}}{2}\\x=\frac{6-2\sqrt{3}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)