Anh Tư có mảnh đất hình vuông trồng hoa, Anh Tư muốn tăng thêm 125% diện tích trồng hoa cho dịp Tết, thì anh Tư phải tăng độ dài mỗi cạnh của mãnh đất hình vuông này thêm bao nhiêu phần trăm?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho x,y là các số dương thỏa mãn xy=1 .Tìm GTNN của biểu thức B=\(\frac{1}{x^2}\)+\(\frac{1}{9y^2}\)

\(\frac{1}{x^2}+\frac{1}{9y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{9y^2}}=\frac{2}{3xy}=\frac{2}{3}\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2}=\frac{1}{9y^2}\\xy=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\sqrt{3}\\y=\frac{1}{\sqrt{3}}\end{cases}}\).

Ta có : \(7x^2+8xy+7y^2=10\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+6\left(x^2+y^2\right)=10\)
\(\Rightarrow6\left(x^2+y^2\right)=10-\left(x+y\right)^2\)
\(\Rightarrow x^2+y^2=\frac{10-\left(x+y\right)^2}{6}=\frac{5}{3}-\frac{\left(x+y\right)^2}{6}\)
Vì \(\left(x+y\right)^2\ge0\forall x,y\)\(\Rightarrow\frac{\left(x+y\right)^2}{6}\ge0\)
\(\Rightarrow x^2+y^2\le\frac{5}{3}\)
Dấu \("="\)xảy ra \(\Leftrightarrow\left(x+y\right)^2=0\)
\(\Leftrightarrow x+y=0\)
\(\Leftrightarrow x=-y\)
\(\Leftrightarrow7x^2-8x^2+7x^2=10\)
\(\Leftrightarrow6x^2=10\)
\(\Leftrightarrow x^2=\frac{5}{3}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{5}{3}\end{cases}}\)
hoặc \(\hept{\begin{cases}x=-\frac{5}{3}\\y=\frac{5}{3}\end{cases}}\)
Ta dễ dàng chứng minh được : \(2xy\le x^2+y^2\forall x,y\)
\(\Rightarrow8xy\le4\left(x^2+y^2\right)\)
Ta có :\(7x^2+8xy+7y^2=7\left(x^2+y^2\right)+8xy=10\)
\(\Rightarrow7\left(x^2+y^2\right)=10-8xy\ge10-4\left(x^2+y^2\right)\)
\(\Rightarrow11\left(x^2+y^2\right)\ge10\)
\(\Rightarrow x^2+y^2\ge\frac{10}{11}\)
Dấu \("="\)xảy ra \(\Leftrightarrow x=y\)
\(\Leftrightarrow7x^2+8x^2+7x^2=10\)
\(\Leftrightarrow22x^2=10\)
\(\Leftrightarrow x^2=\frac{5}{11}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=\sqrt{\frac{5}{11}}\\x=y=-\sqrt{\frac{5}{11}}\end{cases}}\)
Vậy ...


\(3a^2-6ab+3b^2-12c^2\)
\(=3a^2-3ab-3ab+3b^2-12c^2\)
\(=\left(3a^2-3ab\right)-\left(3ab-3b^2\right)-12c^2\)
\(=3a\left(a-b\right)-3b\left(a-b\right)-12c^2\)
\(=\left(3a-3b\right)\left(a-b\right)-12c^2\)
\(=3\left(a-b\right)^2-12c^2\)

2x2-x-13x2-7x-62x2-7x+33x2+13x-10
= 2x2 - 13x2 - 62x2 + 33x2 - x - 7x + 13x - 10
= -40x2 + 5x - 10
= 5 ( -8x2 + x - 2)
giúp mik vs::::Cho A=[(x-1)^2/3x^4*(x-1)^2 - 1-2x^2+4x/x^3-1 +1/x-1] :x^2+x/x^3+x
a)tìm x biết|x|=3/4
