Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi đánh giá năng lực

cho chóp tam giácA.ABC có đáy là tam giác vuông tại B cạnh bên sa vuông với đáy, có SA = 2a, AB = a, BC= a\(\sqrt{3}\), gọi M là điểm trên cạnh SB sao cho 2SM=MB và N là trung điểm cạnh SC. tính thể tích của khối chóp A.MNCB



S A B C M N K H
Ta có \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC;SA\perp AB\) Mà \(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\) => tg SAB là tg vuông tại B
Xét tg vuông SAB có
\(SB=\sqrt{SA^2+AB^2}=\sqrt{4a^2+a^2}=a\sqrt{5}\)
\(\Rightarrow S_{SBC}=\frac{SB.BC}{2}=\frac{a\sqrt{5}.a\sqrt{3}}{2}=\frac{a^2\sqrt{15}}{2}\)
Trong mp(SBC) dựng \(NK\perp SB\)(K thuộc SB) mà \(BC\perp SB\) => NK//BC
Ta có NS=NC
=> NK là đường trung bình của \(\Delta SBC\Rightarrow NK=\frac{BC}{2}=\frac{a\sqrt{3}}{2}\)
Ta có \(2SM=MB\Rightarrow SM=\frac{MB}{2}\Rightarrow SM=\frac{SB}{3}=\frac{a\sqrt{5}}{3}\)
\(\Rightarrow S_{SMN}=\frac{SM.NK}{2}=\frac{1}{2}.\frac{a\sqrt{5}}{3}.\frac{a\sqrt{3}}{2}=\frac{a^2\sqrt{15}}{12}\)
\(\Rightarrow S_{MNBC}=S_{SBC}-S_{SMN}=\frac{a^2\sqrt{15}}{2}-\frac{a^2\sqrt{15}}{12}=\frac{5a^2\sqrt{15}}{12}\)
Trong mp(SAB) từ A dựng đường thẳng \(AH\perp SB\) (H thuộc SB)
Ta có \(BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)
\(\Rightarrow AH\perp\left(SBC\right)\) => AH là đường cao của hình chóp A.MNBC
Xét tg vuông SAB có
\(AB^2=BH.SB\Rightarrow BH=\frac{AB^2}{SB}=\frac{a^2}{a\sqrt{5}}=\frac{a\sqrt{5}}{5}\)
Xét tg vuông ABH có
\(AH=\sqrt{AB^2-BH^2}=\sqrt{a^2-\frac{5a^2}{25}}=\frac{2a\sqrt{5}}{5}\)
\(\Rightarrow S_{A.MNBC}=\frac{1}{3}.S_{MNBC}.AH=\frac{1}{3}.\frac{5a^2\sqrt{15}}{12}.\frac{2a\sqrt{5}}{5}=\frac{5a^3\sqrt{3}}{18}\)



