Cho tứ diện S.ABC có đáy ABC là tam giác vuông tại A.\(AB=3a,AC=4a\). Hình chiếu vuông góc của S lên mp(ABC) là tâm đường tròn nội tiếp tam giác ABC. Biết \(SA=2a\). Tính thể tích khối cầu ngoại tiếp tứ diện S.ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
Gọi $H$ là trung điểm của $AB$. Vì $SAB$ là tam giác đều nên $SH\perp AB$. Mà $AB=(SAB)\cap (ABCD)$ và $(SAB)\perp (ABCD)$
$\Rightarrow SH\perp (ABCD)$
Gọi $M$ là trung điểm $CD$ thì $HM\perp CD$. Mà $SH\perp CD$ (do $SH\perp (ABCD))$
$\Rightarrow (SHM)\perp CD$
$CD$ là giao tuyến của $(SCD), (ABCD)$
$\Rightarrow \angle ((SCD), (ABCD))=\angle (SM, HM)=\widehat{SMH}$
Tam giác $SHM$ vuông tại $H$ có:
$SH=\frac{\sqrt{3}}{2}AB = \frac{\sqrt{3}}{2}a$
$HM=AD=a$
$\Rightarrow \tan \widehat{SMH}=\frac{SH}{HM}=\frac{\sqrt{3}}{2}$
$\Rightarrow \angle ((SCD), (ABCD))=\widehat{SMH}\approx 41^0$

Câu 1: B
Vd1:
a: Vì SA\(\perp\)(ABC)
nên A là hình chiếu của S lên mp(ABC)
b: A là hình chiếu của S lên mp(ABC)
B là hình chiếu của B lên mp(ABC)
Do đó: AB là hình chiếu của SB lên mp(ABC)

a) Gọi M là trung điểm SA.
Có \(SH\perp\left(ABC\right)\Rightarrow SH\perp BC\).
Lại có \(BC\perp BA\) \(\Rightarrow BC\perp\left(SAB\right)\) \(\Rightarrow BC\perp SB\)
Do đó \(\widehat{\left(ABC\right),\left(SBC\right)}=\widehat{SBA}=60^o\)
Khi đó tam giác ABC đều \(\Rightarrow AB=BC=SB=SA=4\)
Đồng thời \(MB\perp SA\)
Mặt khác, ta thấy \(\Delta ABC=\Delta SBC\left(c.g.c\right)\) \(\Rightarrow SC=AC\)
\(\Rightarrow\Delta SAC\) cân tại C \(\Rightarrow MC\perp SA\)
Do đó \(\widehat{\left(SAC\right),\left(SAB\right)}=\widehat{BMC}\)
Vì \(BC\perp\left(SAB\right)\Rightarrow BC\perp BM\Rightarrow\Delta BCM\) vuông tại B
\(\Rightarrow\cos\widehat{BMC}=\dfrac{BC}{CM}=\dfrac{4}{\dfrac{4\sqrt{3}}{2}}=\dfrac{2\sqrt{3}}{3}\)
Vậy \(\cos\widehat{\left(SAC\right),\left(SAB\right)}=\dfrac{2\sqrt{3}}{3}\)
Mình gửi trả lời rồi đó, bạn vào trang cá nhân của mình xem nhé.

Bạn viết lại đề bài nhé, chứ nhìn vào mình không biết nó là \(\left(\dfrac{1}{3}\right)^{x^2}-2x-3=3^x+1\) hay \(\left(\dfrac{1}{3}\right)^{x^2-2x-3}=3^{x+1}\) hay cái gì khác nữa.
\(\left(\dfrac{1}{3}\right)^{x^2-2x-3}=3^{x+1}\)
=>\(3^{-x^2+2x+3}=3^{x+1}\)
=>\(-x^2+2x+3=x+1\)
=>\(-x^2+x+2=0\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)


a: Ta có: DC\(\perp\)AD(ABCD là hình chữ nhật)
DC\(\perp\)SA(SA\(\perp\)(ABCD))
AD,SA cùng thuộc mp(SAD)
Do đó: DC\(\perp\)(SAD)
=>DC\(\perp\)SD
b: Vì SA\(\perp\)(ABCD)
nên A là hình chiếu của S xuống mp(ABCD)
=>\(\widehat{SB;\left(ABCD\right)}=\widehat{BS;BA}=\widehat{SBA}\)