Rút gọn lớp 8
(2x-3)(4x^2-6x+9)-8x(x^2-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(a\left(ax-1\right)=x-1\)
\(\Leftrightarrow a^2x-a=x-1\)
\(\Leftrightarrow a^2x-x=a-1\)
\(\Leftrightarrow x\left(a-1\right)\left(a+1\right)=a-1\)
Với \(a\ne\pm1\)=> Pt có nghiệm duy nhất \(x=\frac{a-1}{a+1}\)
Với \(a=1\)=> Pt có nghiệm đúng với mọi x
Với \(a=-1\)=> Pt vô nghiệm
Bài này cũng dễ mà :) Bạn có thể nhân tích phá ngoặc ra để làm nhé
( x + 5 )( x + 2 ) - 3( 4 x – 3 ) = ( 5 – x ) ²
=> x² + 5x + 2x + 10 – 12 x + 9 = 25 – 10x + x²
=> x² + 5x + 2x + 10 – 12 x + 9 - 25 + 10x - x² = 0
=> 5x – 6 = 0
=>5x = 6
=> x = 1,2 ( Bạn cũng có thể viết kết quả dưới dạng phân số nhé :< )
Áp dụng bất đẳng thức giá trị tuyệt đối \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra khi \(ab\ge0\) ta có :
\(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi \(\left(x-3\right)\left(5-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le5\end{cases}}}\)
\(\Rightarrow\)\(3\le x\le5\)
Trường hợp 2 :
\(\hept{\begin{cases}x-3\le0\\5-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge5\end{cases}}}\) ( loại )
Do đó :
\(2a=2\) \(\Rightarrow\) \(a=\frac{2}{2}=1\)
Vậy \(a=1\) khi \(3\le x\le5\)
Chúc bạn học tốt ~
gợi ý nha:
https://olm.vn/hoi-dap/question/1035789.html
k mik đi
@_@
Lik đó bạn:olm.vn/hoi-dap/question/1035789.html
= (8x^3 -27) -8x^3 +8x
= 8x-27
Bạn áp dụng hằng đẳng thức. Chúc bạn học tốt.