Cho a=(1-1/2)*(1-1/3)*(1-1/4)*...*(1-1/19)*(1-1/20). So sanh a voi 1/21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


x+y=1
<=> x=1-y
<=>P=(1-y)y=\(y-y^2\)
<=>P=\(\frac{1}{4}-\left(y^2-y+\frac{1}{4}\right)\)
<=>P=\(\frac{1}{4}-\left(y-\frac{1}{2}\right)^2\le\frac{1}{4}\)
=>Max của P=\(\frac{1}{4}\)<=>y=\(\frac{1}{2}\)
x+y=1
\(\Rightarrow x=1-y\)
\(\Rightarrow P=x.y=\left(1-y\right).y=y-y^2=-\left(y^2-y\right)\)
\(\Rightarrow P=-\left(y^2-2.y.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)
\(\Rightarrow P=-\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}\)
\(\Rightarrow P=-\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì :\(\left(y-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow-\left(y-\frac{1}{2}\right)^2\le0\)
\(\Rightarrow P\le\frac{1}{4}\)
\(\Rightarrow GTLN\)của\(P=\frac{1}{4}\)khi : \(y=\frac{1}{2}\)
\(\Rightarrow x=1-\frac{1}{2}=\frac{1}{2}\)

\(Q=\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
\(=\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}=\frac{2}{3.4}=\frac{1}{6}\)
Q = \(\frac{2^{12}.3^5-4^6.81}{\left(2^2.3\right)^6+8^4.3^5}\)
= \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}\)
= \(\frac{2^{12}.3^4.\left(3-1\right)}{2^{12}.3^5.\left(3+1\right)}\)
= \(\frac{2}{3.4}=\frac{1}{6}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(A=\left(\frac{2}{2}-\frac{1}{2}\right)\left(\frac{3}{3}-\frac{1}{3}\right)...\left(\frac{19}{19}-\frac{1}{19}\right)\left(\frac{20}{20}-\frac{1}{20}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}\)
\(A=\frac{1.2.3...18.19}{2.3.4...19.20}\)
\(A=\frac{1}{20}\Leftrightarrow A>\frac{1}{21}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}......\frac{19}{20}=\frac{1}{20}>\frac{1}{21}\)
\(\text{Vậy: A lớn hơn 1/21}\)