Chung minh Dx // Fy biet goc D=45 do goc E=85 do goc F=40 do
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét các tia x'ox và y'oy, có hai góc đối đỉnh là xoy và x'oy'
gọi ot và ot' là hai tia phân giác tương ứng
Thấy: góc xoy = góc x'oy'
=> góc yot = góc y'ot'
ta có: góc xoy + góc xoy' = góc toy' + góc yot = 1800
<=> góc toy' + góc y'ot' = góc tot' = 1800
=> ot và ot' là hài tia đối nhau
m t x y t' n O
Có hóc xOm và yOn đối đỉnh.
Ot; Ot' lần lượt là tia phân giác của góc xOm, yOn.
Chứng minh Ot; Ot' là hai tia đối nhau:
- Ot là tia phân giác góc xOm => góc mOt = \(\frac{1}{2}\) góc xOm.
Ot' là tia phân giác góc yOn => góc nOt' = \(\frac{1}{2}\) góc yOn
Mà góc xOm = góc yOn nên góc mOt = nOt'
- Om; On là 2 tia đối nhau nên Ot nằm giữa 2 tia Om và On.
=> góc mOt + tOn = mOn = 180o
=> nOt' + tOn = 180o
=> góc tOt' = 180o => Ot, Ot' là hai tia đối nhau.
gọi tử số của phân số cần tìm là x (x>0)
theo bài phân số ban đầu là x/(x+11)
do đó (x+3)/(x+11-4)=3/4
<=>4(x+3)=3(x+7)
<=> 4x+12=3x+21
<=>x= 9
<=> phân số cần tìm là 9/(9+11)=9/20
gọi ts là x, ms là x+11
ta có \(\frac{x+3}{x+7}=\frac{3}{4}\)=> 4(x+3)=3(x+7) => 4x+12=3x+21 => x = 9
vậy phân số đó là 9/20
\(2\left(x+5\right)-x^2-5x=0\)
\(\Rightarrow2x+10-x^2-5x=0\)
\(\Rightarrow x^2+3x-10=0\)
\(\Rightarrow x^2-2x+5x-10=0\)
\(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Hình vẽ:
Lời giải:
a)
HM⊥AB;HN⊥AC⇒HMAˆ=HNAˆ=900HM⊥AB;HN⊥AC⇒HMA^=HNA^=900
Xét tứ giác AMHNAMHN có tổng 2 góc đối HMAˆ+HNAˆ=900+900=1800HMA^+HNA^=900+900=1800 nên AMHNAMHN là tứ giác nội tiếp (đpcm)
b)
Vì AMHNAMHN nội tiếp ⇒AMNˆ=AHNˆ⇒AMN^=AHN^
Mà AHNˆ=ACBˆ(=900−NHCˆ)AHN^=ACB^(=900−NHC^)
⇒AMNˆ=ACBˆ⇒AMN^=ACB^
Xét tam giác AMNAMN và ACBACB có:
{Aˆ−chungAMNˆ=ACBˆ(cmt)⇒△AMN∼△ACB(g.g){A^−chungAMN^=ACB^(cmt)⇒△AMN∼△ACB(g.g)
⇒AMAC=ANAB⇒AM.AB=AC.AN⇒AMAC=ANAB⇒AM.AB=AC.AN (đpcm)
c)
Ta có: ACBˆ=AEBˆACB^=AEB^ (góc nội tiếp chắn cung ABAB)
ACBˆ=AMNˆACB^=AMN^ (cmt)
⇒AEBˆ=AMNˆ⇒AEB^=AMN^
⇔IEBˆ=1800−BMIˆ⇔IEB^=1800−BMI^
⇔IEBˆ+BMIˆ=1800⇔IEB^+BMI^=1800, do đó tứ giác BMIEBMIE nội tiếp
⇒MIEˆ=1800−MBEˆ=1800−900=900⇒MIE^=1800−MBE^=1800−900=900 (MBEˆ=ABEˆ=900MBE^=ABE^=900 vì là góc nt chắn nửa đường tròn)
⇒MN⊥AE⇒MN⊥AE . Ta có đpcm.
~Hok tốt~
A là số nguyên khi
4n - 2 ⋮ n - 2
=> 4n - 8 + 6 ⋮ n - 2
=> 4(n - 2) + 6 ⋮ n - 2
=> 6 ⋮ n - 2
\(A=4n-2⋮n-2\)
\(\Rightarrow4n-8+6⋮n-2\)
\(\Rightarrow4(n-2)+6⋮n-2\)
Mà \(n-2⋮n-2\Rightarrow6⋮n-2\)
\(\Rightarrow n-2\inƯ(6)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Đến đây dễ tìm
https://olm.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC+c%C3%A2n+t%E1%BA%A1i+A,+tr%C3%AAn+c%E1%BA%A1nh+Ab+l%E1%BA%A5y+%C4%91i%E1%BB%83m+d+Tren+Ac+l%E1%BA%A5y+di%E1%BB%83m+E+sao+cho+AD=AE.+G%E1%BB%8Di+M+l%C3%A0+giao+%C4%91i%E1%BB%83m+BE+v%C3%A0+CD+CMR+:+a,+BE=CD+b,+tam+gi%C3%A1c+BMD+=+TAM+GI%C3%81C+CME+C,+AM+l%C3%A0+ph%C3%A2n+gi%C3%A1c+BAC+gi%E1%BA%A3i+gi%C3%BAp+mik+v%E1%BB%9Bi+...+k%E1%BA%BB+giao+%C4%91i%E1%BB%83m+nh%C6%B0+th%E1%BA%BF+n%C3%A0o+v%E1%BA%ADy+?&id=364664
A B C D E K
Cm: a) Xét t/giác ADC và t/giác AEB
có: AC = AB (gt)
góc A : chung
AD = AE (gt)
=> t/giác ADC = t/giác AEB (c.g.c)
=> DC = BE (hai cạnh tương ứng)
b) Ta có: AD + DB = AB
AE + EC = AC
Mà AB = AC (gt); AD = AE (gt)
=> DB = EC
Ta lại có:
góc BDC là góc ngoài của t/giác ADC
=> góc BDC = góc A + góc ACD
góc BEC là góc ngoài của t/giác ABE
=> góc BEC = góc A + góc ABE
Mà góc ACD = góc ABE
=> góc BDC = góc BEC hay góc BDK = góc KEC
Xét t/giác KBD và t/giá KCE
có góc DBK = góc ECK (vì t/giác ABE = t/giác ACD)
BD = EC (cmt)
góc BDK = góc EKC (cmt)
=> t/giác KBD = t/giác KCE
c) Xét t/giác ABK và t/giác ACK
có AB = AC (gt)
AK : chung
BK = CK (vì t/giác KBD = t/giác KCE)
=> t/giác ABK = t/giác ACK (c.c.c)
=> góc BAK = góc CAK (hai góc tương ứng)
=> AK là tia p/giác của góc A
d) Ta có: AD = AE (gt)
=> A thuộc đường trung trực của DE
DK = KE (vì t/giác KBD = t/giác KCE)
=> K thuộc đường trung trực của DE
DO A khác K => AK là đường trung trực của DE
e) Ta có: AD = AE
=> t/giác ADE cân tại A
=> góc ADE = góc AED = \(\frac{180^0-\widehat{A}}{2}\) (1)
Ta lại có: t/giác ABC cân tại A
=> góc B = góc C = \(\frac{180^0-\widehat{A}}{2}\) (2)
Từ (1) và (2) => góc ADE = góc B
Mà góc ADE và góc B ở vị trí đồng vị
=> AE // BC (Đpcm)
3x + 2 - 3x = 24
=> 3x.9 - 3x = 24
=> 3x(9 - 1) = 24
=> 3x.8 = 24
=> 3x = 24 : 8
=> 3x = 31
=> x = 1
\(3^{x+2}-3^x=24\)
\(3^x.3^2-3^x=24\)
\(3^x\left(3^2-1\right)=24\)
\(3^x.8=24\)
\(3^x=24:8=3\)
\(\Rightarrow x=1\)
\(\left(x-\frac{1}{2}\right)\left(x+\frac{3}{4}\right)>0\)
th1 :
\(\hept{\begin{cases}x-\frac{1}{2}>0\\x+\frac{3}{4}>0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>-\frac{3}{4}\end{cases}\Rightarrow}x>\frac{1}{2}}\)
th2 :
\(\hept{\begin{cases}x-\frac{1}{2}< 0\\x+\frac{3}{4}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< -\frac{3}{4}\end{cases}\Rightarrow}x< -\frac{3}{4}}\)
tra loi giup di
Tam giác MNP có: M + N + P = 1800
500 + N + P = 1800
N + P = 1800 - 500 = 1300
N = P + 300 => N - P = 300
<=> N = (1300 + 300) : 2 = 800
P = 800 - 300 = 500
Vì tam giác MNP = tam giác DEF nên
góc N = góc E = 800
góc P = góc F = 500 (đpcm)
Bạn ơi hình như là hình tam giác bạn thiếu đề ạ