1,Có bao nhiêu số có 3 chữ số khác nhau mà mỗi số chỉ có 1 c/s 3?
2,Có bao nhiêu số có 3 chữ số mà mỗi số chỉ có 1 c/s 3?
(Cả 2 bài đều giải)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy tổng diện tích của 4 tam giác trên là:
1/6 * AB^2 + 1/3 * BC^2 + 1/6 * CD^2 + 1/6 * DA^2
Do đó, ta có:
Vậy diện tích hình MNPQ bằng:
2 * diện tích tam giác EFG = 2 * 1/8 * AC * BD = 1/4 * AB * CD
Từ đó, ta suy ra diện tích hình MNPQ là 1/4 diện tích hình chữ nhật ABCD:
Diện tích hình MNPQ = 1/4 * 324 cm^2 = 81 cm^2
` @ L I N H `
Vậy tổng diện tích của 4 tam giác trên là:
1/6 * AB^2 + 1/3 * BC^2 + 1/6 * CD^2 + 1/6 * DA^2
Do đó, ta có:
Vậy diện tích hình MNPQ bằng:
2 * diện tích tam giác EFG = 2 * 1/8 * AC * BD = 1/4 * AB * CD
Từ đó, ta suy ra diện tích hình MNPQ là 1/4 diện tích hình chữ nhật ABCD:
Diện tích hình MNPQ = 1/4 * 324 cm^2 = 81 cm^2
Dãy số câu b quy luật nó bị sai ở hạng tử cuối?
\(\dfrac{8^{14}}{4^4.64^5}=\dfrac{\left(2^3\right)^{14}}{\left(2^2\right)^4.\left(2^5\right)^5}=\dfrac{2^{42}}{2^8.2^{25}}=2^{42-\left(8+25\right)}=2^9\)
\(\dfrac{9^{10}.27^7}{81^7.3^{15}}=\dfrac{\left(3^2\right)^{10}.\left(3^3\right)^7}{\left(3^4\right)^7.3^{15}}=\dfrac{3^{20}.3^{21}}{3^{28}.3^{15}}=\dfrac{3^{20+21}}{3^{28+15}}=\dfrac{3^{41}}{3^{41}.3^2}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
\(\dfrac{7}{8}:\dfrac{1}{4}-\dfrac{3}{8}\)
\(=\dfrac{7}{8}\times\dfrac{4}{1}-\dfrac{3}{8}\)
\(=\dfrac{28}{8}-\dfrac{3}{8}\)
\(=\dfrac{25}{8}\)
Chúc bạn học tốt
Câu 1:
TH1: Chữ số 3 ở hàng trăm, chữ số hàng chục có 9 TH, chữ số hàng đơn vị có 8 TH
=> Số lượng số thoả mãn TH1: 1 x 9 x 8 = 72 (số)
TH2: Chữ số 3 nằm ở hàng chục hoặc hàng đơn vị, chữ số hàng trăm có 8TH (khác 3 và khác 0), chữ số hàng đơn vị (hoặc chục) còn lại có 8TH (khác 3 và khác hàng trăm)
=> Số lượng số thoả mãn ở TH2: 2 x 8 x 8 = 128 (số)
Số lượng số tự nhiên có 3 chữ số khác nhau mà mỗi số chỉ có 1 chữ số 3:
72 + 128= 200 (số)
Câu 2:
TH1: Chữ số 3 nằm hàng trăm, hàng chục có 9 cách chọn (khác 3), hàng đơn vị có 9 cách chọn (khác 3) => Số lượng số thoả mãn TH1: 9 x 9 = 81 (số)
TH2: Chữ số 3 nằm ở hàng chục hoặc hàng đơn vị, thì hàng trăm có 8 cách chọn số (trừ số 0 và số 3), hàng đơn vị (hoặc hàng chục) còn lại có 9 cách chọn số (trừ số 3) => Số lượng số thoả mãn: 8 x 9 x 2 = 144 (số)
Số lượng số có 3 chữ số mà mỗi số chỉ có 1 chữ số 3:
81 + 144 = 225 (số)
Đáp số: 225 số