K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2020

ĐK : \(x\ne1\)

Sử dụng chia 2 đa thức ta được

\(\frac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}=x^2-2x+1+\frac{3}{x^2-4}\)

Để phân thức có giá trị nguyên

\(\Leftrightarrow\frac{3}{x^2-4}\inℤ\)

\(\Leftrightarrow x^2-4\inƯ\left(3\right)\)

Ta có bảng sau :

x2 - 4 1-13-3
x\(\sqrt{5}\left(L\right)\)\(\sqrt{3}\left(L\right)\)\(\sqrt{7}\left(L\right)\)1 hoặc -1

Vậy ...............

9 tháng 1 2020

Đk : \(x\ne5;x\ne0;x\ne4\)

a) ta có:

\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(KTM\right)\\x=3\left(TM\right)\end{cases}}\)

Thay x= 3 vào biểu thức A , ta được :

\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

vậy ..............

b) \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(B=\frac{x+5}{2x}+\frac{6-x}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(B=\frac{\left(x-5\right)\left(x+5\right)+2x\left(6-x\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(B=\frac{x^2-25+12x-2x^2-2x^2+2x+50}{2x\left(x-5\right)}\)

\(B=\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)

c) Ta có :

\(P=A.B\)

\(P=\frac{x-5}{x-4}.\frac{-3x^2+25+14x}{2x\left(x-5\right)}\)

\(P=\frac{-3x^2+25+14x}{2x\left(x-4\right)}\)

\(P=\frac{-3x^2+25+14x}{2x^2-8x}\)

8 tháng 1 2020

A B C E F O

GT

 △ABC . BE ⊥ AC, CF ⊥ AB. BE = CF = 8 cm

 BF và BC tỉ lệ 3 và 5

 BE ∩ CF = {O} . Nối AO với EF

KL

 a, △ABC cân

 b, BC = ?

 c, AO là trung trực EF

Bài làm:

a, Xét △BFC vuông tại F và △CEB vuông tại E

Có: BC là cạnh chung

      CF = BE (gt)

=> △BFC = △CEB (ch-cgv)

=> FBC = ECB (2 góc tương ứng)

Xét △ABC có: ABC = ACB (cmt)

=> △ABC cân tại A

b, Gọi độ dài của cạnh BF và BC là a, b (cm, a, b > 0)

Theo bài ra, ta có: \(\frac{a}{3}=\frac{b}{5}\)\(\Rightarrow b=\frac{5a}{3}\)

Xét △FBC vuông tại F có: \(BC^2=BF^2+FC^2\)(định lý Pitago)

\(\Rightarrow b^2=a^2+8^2\)\(\Rightarrow\left(\frac{5a}{3}\right)^2=a^2+64\)\(\Rightarrow\frac{25}{9}.a^2-a^2=64\)

\(\Rightarrow a^2\left(\frac{25}{9}-1\right)=64\)\(\Rightarrow a^2.\frac{16}{9}=64\)\(\Rightarrow a^2=64\div\frac{16}{9}=36\)\(\Rightarrow a=6\)

\(\Rightarrow b=\frac{5}{3}a=\frac{5}{3}.6=10\)\(\Rightarrow BC=10\)(cm)

c, Vì △ABC cân tại A => AB = AC

Ta có: AB = AF + FB

          BC = AE + EC

Mà AB = AC (cmt) ; BF = EC (△BFC = △CEB)

=> AF = AE

=> A thuộc đường trung trực của FE   (1)

Ta có: DBC = FBE + EBC 

          ECB = ECF + FCB

Mà DBC = ECB (cmt); BCF = EBC (△BFC = △CEB)

=> FBE = ECF

Xét △BFO vuông tại F và △CEO vuông tại E

Có: FBO = ECO (cmt) 

     BF = CE (△BFC = △CEB)

=> △BFO = △CEO (cgv-gnk)

=> FO = OE (2 cạnh tương ứng)

=> O thuộc đường trung trực của FE   (2)

Từ (1) và (2) => đường thẳng AO là trung trực của EF.

8 tháng 1 2020

thank bạn

8 tháng 1 2020

B C A H K O E D
a) Xét t.g. BCD và t.g. CBE, có:

     ^B1=^C1 (gt)

       BC chung                     => t.g BCD= t.g. CBE

     ^EBC=^DCB (gt)                        (g.c.g)

=> CD = BE ( 2 cạnh tương ứng)

=> BD = CE ( 2 cạnh tương ứng)

=> ^ODC= ^OEB ( 2 góc tương ứng)

b) Xét t.g. OBE và t.g. OCD, có:

           ^B2 = ^C2 (gt)

             CD= BE (cmt)               => t.g. OBE= t.g. OCD

           ^ ODC= ^OEB (cmt)                    (g.c.g)

=> OB=OC ( 2 cạnh tương ứng)

c) Ta có: OB+OD= BD; OC+OE= CE

Mà OB=OC (theo phần b); BD=CE (theo phần a)

=> OD=OE

*Xét t.g. OKE, có: ^KEO+ ^EOK= 900

*Xét t.g. OHD, có: ^ODH+ ^DOH= 900

Do ^ ODH = ^KEO => ^EOK = ^DOH

* Xét t.g. OKE và t.g. OHD, có:

    ^EKO = ^DHO = 900

      OE= OD (cmt)                         => t.g. OKE= t.g. OHD

     ^EOK = ^DOH (cmt)                  (cạnh huyền- góc nhọn)

=> OK=OH ( 2 cạnh tương ứng)

24 tháng 7 2021

Độ dài đáy: 8 dm

dộ dài chiều cao: 4 dm