K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(x+2y\right)^2+\left(2x-y\right)^2-5\left(x+y\right)\left(x-y\right)-10\left(y+3\right)\left(y-3\right)\)

\(=x^2+4xy+4y^2+4x^2-4xy+y^2-5\left(x^2-y^2\right)-10\left(y^2-9\right)\)

\(=5x^2+5y^2-5x^2+5y^2-10y^2+90\)

=90

=>A không phụ thuộc vào biến

a: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(\widehat{ABC}+\widehat{ACB}+60^0=180^0\)

=>\(2\left(\widehat{OBC}+\widehat{OCB}\right)=180^0-60^0=120^0\)

=>\(\widehat{OBC}+\widehat{OCB}=60^0\)

Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)

=>\(\widehat{BOC}=180^0-60^0=120^0\)

Gọi OH là phân giác của góc BOC

=>\(\widehat{BOH}=\widehat{COH}=\dfrac{\widehat{BOC}}{2}=60^0\)

Ta có: \(\widehat{EOB}+\widehat{BOC}=180^0\)(hai góc kề bù)

=>\(\widehat{EOB}+120^0=180^0\)

=>\(\widehat{EOB}=60^0\)

=>\(\widehat{DOC}=60^0\)

Xét ΔEOB và ΔHOB có

\(\widehat{EOB}=\widehat{HOB}\left(=60^0\right)\)

OB chung

\(\widehat{EBO}=\widehat{HBO}\)

Do đó: ΔEOB=ΔHOB

=>OH=OE

Xét ΔOHC và ΔODC có

\(\widehat{OCH}=\widehat{OCD}\)

CO chung

\(\widehat{COH}=\widehat{COD}\left(=60^0\right)\)

Do đó: ΔOHC=ΔODC
=>OH=OD

=>OE=OD

=>ΔODE cân tại O

b: ΔOHB=ΔOEB

=>BH=BE

ΔOHC=ΔODC
=>HC=DC

BC=BH+CH

mà BH=BE và CH=CD

nên BC=BE+DC

a: Xét tứ giác AGCE có

N là trung điểm chung của AC và GE

=>AGCE là hình bình hành

b: Xét ΔABC có

AM,BN là các đường trung tuyến

AM cắt BN tại G

Do đó: G là trọng tâm của ΔABC

=>AG=2GM

mà AG=GF

nên GF=2GM

=>M là trung điểm của GF

=>MG=MF

Xét tứ giác BGCF có

M là trung điểm chung của BC và GF

=>BGCF là hình bình hành

=>BF//CG

mà CG//AE

nên FB//AE

 

a: Xét tứ giác BHCK có

M là trung điểm chung của BC và HK

=>BHCK là hình bình hành

b: BHCK là hình bình hành

=>BH//CK và BK//CH

Ta có: BH//CK

BH\(\perp\)AC
DO đó: CK\(\perp\)AC

Ta có:BK//CH

CH\(\perp\)AB

Do đó: BK\(\perp\)BA

c: ΔBEC vuông tại E

mà EM là đường trung tuyến

nên \(EM=\dfrac{BC}{2}\left(1\right)\)

Ta có: ΔBFC vuông tại F

mà FM là đường trung tuyến

nên \(FM=\dfrac{BC}{2}\left(2\right)\)

Từ (1),(2) suy ra ME=MF

=>ΔMEF cân tại M

7 tháng 8 2024

\(1,A=x^2-12x+11\\ =\left(x^2-12x+36\right)-25\\ =\left(x-6\right)^2-25\)

Ta có: `(x-6)^2>=0` với mọi x

`=>(x-6)^2-25>=-25` với mọi x

Dấu "=" xảy ra: `x-6=0<=>x=6`

\(2,M=-4x^2+12x-7\\ =\left(-4x^2+12x-9\right)+2\\ =-\left(4x^2-12x+9\right)+2\\ =-\left(2x-3\right)^2+2\)

Ta có: `(2x-3)^2>=0` với mọi x

`=>-(2x-3)^2<=0` với mọi x

`=>-(2x-3)^2+2<=2` với mọi x

Dấu "=" xảy ra: `2x-3=0<=>x=3/2`

1: \(A=x^2-12x+11\)

\(=x^2-12x+36-25\)

\(=\left(x-6\right)^2-25>=-25\forall x\)

Dấu '=' xảy ra khi x-6=0

=>x=6

10: \(M=-4x^2+12x-7\)

\(=-4x^2+12x-9+2\)

\(=-\left(2x-3\right)^2+2< =2\forall x\)

Dấu '=' xảy ra khi 2x-3=0

=>2x=3

=>\(x=\dfrac{3}{2}\)

7 tháng 8 2024

\(\left(a-x\right)y^3-\left(a-y\right)x^3+\left(x-y\right)a^3\\ =ay^3-xy^3-ax^3+x^3y+a^3x-a^3y\\ =\left(ay^3-ax^3\right)+\left(-xy^3+xy^3\right)+\left(a^3x-a^3y\right)\\ =a\left(y^3-x^3\right)+-xy\left(y^2-x^2\right)+a^3\left(x-y\right)\\ =a\left(y-x\right)\left(x^2+xy+y^2\right)-xy\left(y-x\right)\left(x+y\right)-a^3\left(y-x\right)\\ =\left(y-x\right)\left[a\left(x^2+xy+y^2\right)-xy\left(x+y\right)-a^3\right]\\ =\left(y-x\right)\left(ax^2+axy+ay^2-x^2y-xy^2-a^3\right)\)

7 tháng 8 2024

\(x^3-5x^2+8x-4\\ =\left(x^3-x^2\right)+\left(-4x^2+4x\right)+\left(4x-4\right)\\ =x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\\ =\left(x^2-4x+4\right)\left(x-1\right)\\ =\left[x^2-2\cdot x\cdot2+2^2\right]\left(x-1\right)\\ =\left(x-2\right)^2\left(x-1\right)\)

a: Ta có: BH\(\perp\)AC

CK\(\perp\)AC

Do đó: BH//CK

Ta có: CH\(\perp\)AB

BK\(\perp\)BA

Do đó: CH//BK

Xét tứ giác BHCK có

BH//CK

BK//CH

Do đó: BHCK là hình bình hành

b: BHCK là hình bình hành

=>BC cắt HK tại trung điểm của mỗi đường

mà M là trung điểm của BC

nên M là trung điểm của HK

=>H,M,K thẳng hàng

c: Xét ΔHIK có

G,M lần lượt là trung điểm của HI,HK

=>GM là đường trung bình của ΔHIK

=>GM//IK

=>BC//IK

Xét ΔCHI có

CG là đường cao

CG là đường trung tuyến

Do đó: ΔCHI cân tại C

=>CH=CI

mà CH=BK

nên BK=CI

Xét tứ giác BCKI có BC//KI và BK=CI

nên BCKI là hình thang cân