Hú các bạn lại là mih đây =3=
[(X+3):(x-2)]+[(x-3):(x+2)]+[(x2+4x+8):(4-x2)
Cám ơn các anh chị và các bạn nha =]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 : c1 \(3^{4000}\)và \(9^{2000}\)
\(\Leftrightarrow9^{2000}\Leftrightarrow\left(3^2\right)^2^{000}\Leftrightarrow3^{4000}\)
vì \(3^{4000}=3^{4000}\Leftrightarrow3^{4000}=9^{2000}\)
c2
ta có
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
bài 5
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
3) M = 22010 - (22009 + 22008 + .... + 21 + 20)
Đặt N = 22009 + 22008 + .... + 21 + 20
=> 2N = 22010 + 22009 + .... + 22 + 21
=> 2N - N = (22010 + 22009 + .... + 22 + 21) - (22009 + 22008 + .... + 21 + 20)
=> N = 22010 - 1
Khi đó M = 22010 - (22010 - 1) = 1
4) C1 Ta có 34000 = (34)1000 = 811000 = (92)1000 = 92000
34000 = 92000
C2 Ta có : 34000 = (34)1000 = 811000 (1)
Lại có 92000 = (92)1000 = 811000 (2)
Từ (1) (2) => 34000 = 92000
5 Ta có 2332 < 2333 = (23)111 = 8111 < 9111 = (32)111 = 3222 < 3223
=> 2332 < 3223
2) Ta có n150 < 5225
=> (n5)75 < (53)75
=> n5 < 53
=> n5 < 125
Vì n là số nguyên lớn nhất => n = 2
Ta có: \(\frac{x-y}{z}=\frac{3y}{x-z}=\frac{x}{y}\)(1)
Áp dụng tính chất DTSBN, ta được: \(\frac{x-y+3y}{z+x-z}=\frac{x}{y}\Rightarrow\frac{x+2y}{x}=\frac{x}{y}\)
\(\Rightarrow y\left(x+2y\right)=x^2\)(vì x, y, z là 3 số dương phân biệt)
\(\Rightarrow xy+2y^2=x^2\)
\(\Rightarrow xy+y^2=x^2-y^2\)
\(\Rightarrow y\left(x+y\right)=\left(x-y\right)\left(x+y\right)\)\(\Rightarrow x-y=y\Rightarrow x=2y\)
Thay x = 2y vào (1), ta được:
\(\frac{x-y}{z}=\frac{x}{y}\Rightarrow\frac{2y-y}{z}=\frac{2y}{y}\Rightarrow\frac{y}{z}=2\)\(\Rightarrow y=2z\)
Vậy x = 2y và y = 2z.
\(\hept{\begin{cases}2x+y=50\\2x-y=14\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(2x+y\right)-\left(2x-y\right)=36\\2x-y=14\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=36\\2x-y=14\end{cases}\Leftrightarrow\hept{\begin{cases}y=18\\x=16\end{cases}}}\)
Ta có \(\frac{x-y}{z}=\frac{3y}{x-z}=\frac{x}{y}=\frac{x-y+3y+x}{z+x-z+y}=\frac{2x+2y}{x+y}=\frac{2\left(x+y\right)}{x+y}=2\)(dãy tỉ số bằng nhau)
=> x = 2y (đpcm)
Khi đó \(\frac{x-y}{z}=2\Leftrightarrow x-y=2z\Rightarrow2y-y=2z\Rightarrow y=2z\)(đpcm)
\(1,75-\left|x\right|=3,21\)
\(\Leftrightarrow\left|x\right|=1,75-3,21\)
\(\Leftrightarrow\left|x\right|=-1,46\) ( Vô lí )
Không tồn tại x thỏa mãn đề.
1,75-|x|=3,21
1,75-x=3,21 hoặc 1,75-x=-3,21
x=1,75-3,21 hoặc x=1,75+3,21
x=-1,46 hoặc x=4,96
vậy x=-1,46 hoặc 4,96