cho góc AOB và Ox là tia phân giác của góc AOB . Gọi 3 tia OC , OD , Oy lần lượt theo thứ tự là tia đối của các tia OA,OB,Ox Chứng minh tia Oy là tia phân giác của góc COB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



\(S=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)
\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A< 1-\dfrac{1}{50}\Rightarrow A< 1\)
Ta có \(S=\dfrac{1}{2^2}\left(1+A\right)\)
Ta có
\(A< 1\Rightarrow1+A< 2\Rightarrow S< \dfrac{1}{2^2}.2=\dfrac{1}{2}\)


\(b=3.10^{100}+10^{99}+8=3.10^{100}+999...9+9⋮3\)
\(b=3.10^{100}+10^{99}+8⋮8\)
b đồng thời chia hết cho 3 và 8
3 và 8 nguyên tố cùng nhau và 3x8=24
=> b chia hết cho 24
