CMR : với mọi số tự nhiên n > 1, ta có :
a) \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)
b) \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\left(\frac{x+1}{x}\right)^2=\left(x+4\right)^2\)
\(8+\frac{16}{x}+\frac{8}{x^2}=x^2+8x+16\)
\(8x^2+16x+8=x^4+8x^3+16x^2\)
\(8x^2+16x+8-x^4-8x^3-16x^2=0\)
\(-8x^2+16x+8-x^4-8x^3=0\)
\(-x^4-8x^3-8x^2+16x+8=0\)
làm nốt nhé !
\(\frac{-1}{y-1}+\frac{24}{y+2}=13\) ĐKXĐ: y khác 1; y khác 2
=> -1(y+2) + 24(y-1) = 13( y + 2 )(y-1 )
<=> -y - 2 + 24y - 24 = 13(y2 - y + 2y - 2 )
<=> -y - 2 + 24y - 24 - 13y2 + 13y-26y + 26 = 0
<=> -13y2 + 10y = 0
<=> y( -13y + 10 ) = 0
<=> y = 0 hoặc -13y + 10 = 0
<=> y = 0 hoặc y = 10/13
Vậy S = { 0; 10/13 }
Bài làm
\(\frac{-1}{y-1}+\frac{24}{y+2}=13\) ĐKXĐ: y khác 1; y khác -2
\(\Rightarrow-1\left(y+2\right)+24\left(y-1\right)=13\)
\(\Leftrightarrow-y-2+24y-24-13=0\)
\(\Leftrightarrow23y-39=0\)
\(\Leftrightarrow y=\frac{39}{23}\)
Vậy y = 39/23 là nghiệm phương trình.
Xét tam giac abc vuông tại a:
\(ab^2+bc^2=ac^2\)(ĐL Pytago)
\(\Rightarrow bc^2=ac^2-ab^2=5^2-3^2=16\)
\(\Rightarrow bc=4\left(cm\right)\)
Diien tích xung quanh hình hộp chữ nhật là \(S_{xq}=2.\left(3+4\right).6=84\left(cm^2\right)\)
Diện tích toàn phần hình hộp chữ nhật là \(S_{tp}=2.3.4+84=108\left(cm^2\right)\)
Thể tích hình hộp chữ nhật là \(V=3.4.6=72\left(cm^3\right)\)
a) Ta có \(\frac{1}{n+k}>\frac{1}{2n}\)với k=1;2;...;n-1
=> \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{2n}+\frac{1}{2n}+\frac{1}{2n}+....+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}\)
Mặt khác ta có \(\frac{1}{n+k}+\frac{1}{n\left(+\left(n+1-k\right)\right)}< \frac{3}{2n}\)
\(\Leftrightarrow3k^2+3nk+n+3k\forall k=1;2;...;n\)
Với k=1 ta có \(\frac{1}{n+1}+\frac{1}{n+n}< \frac{3}{2n}\)
Với k=2 ta có \(\frac{1}{n+2}+\frac{1}{n+\left(n-1\right)}< \frac{3}{2n}\)
..........................................
Với k=n ta có \(\frac{1}{n+n}+\frac{1}{n+1}< \frac{3}{2n}\)
Cộng từng vế của 2 BĐT trên ta được
\(2\left(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\right)< \frac{3}{2n}+\frac{3}{2n}+....+\frac{3}{2n}=\frac{3n}{2n}=\frac{3}{2}\)
\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}< \frac{3}{4}\)(đpcm)
Không cần chứng minh \(\frac{1}{2}< \frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}\)