Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Câu 5:
Ta có:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}=\frac{2}{1+ab}\left(ĐKXĐ:a,b\in R\right)\)
\(\Leftrightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}-\frac{2}{1+ab}=0\)
\(\Leftrightarrow\left(\frac{1}{a^2+1}-\frac{1}{1+ab}\right)+\left(\frac{1}{b^2+1}-\frac{1}{1+ab}\right)=0\)
\(\Leftrightarrow\left[\frac{1+ab}{\left(a^2+1\right)\left(1+ab\right)}-\frac{a^2+1}{\left(a^2+1\right)\left(1+ab\right)}\right]\)\(+\left[\frac{1+ab}{\left(b^2+1\right)\left(1+ab\right)}-\frac{b^2+1}{\left(1+ab\right)\left(b^2+1\right)}\right]\)\(=0\)
\(\Leftrightarrow\frac{1+ab-a^2-1}{\left(a^2+1\right)\left(1+ab\right)}+\frac{1+ab-b^2-1}{\left(b^2+1\right)\left(1+ab\right)}=0\)
\(\Leftrightarrow\frac{ab-a^2}{\left(a^2+1\right)\left(1+ab\right)}+\frac{ab-b^2}{\left(b^2+1\right)\left(1+ab\right)}=0\)
\(\Leftrightarrow\frac{\left(ab-a^2\right)\left(b^2+1\right)}{\left(a^2+1\right)\left(1+ab\right)\left(b^2+1\right)}+\frac{\left(ab-b^2\right)\left(a^2+1\right)}{\left(b^2+1\right)\left(1+ab\right)\left(a^2+1\right)}=0\)
\(\Leftrightarrow\frac{\left(ab-a^2\right)\left(b^2+1\right)+\left(ab-b^2\right)\left(a^2+1\right)}{\left(a^2+1\right)\left(1+ab\right)\left(b^2+1\right)}=\frac{0}{\left(a^2+1\right)\left(1+ab\right)\left(b^2+1\right)}\)
\(\Rightarrow\left(ab-a^2\right)\left(b^2+1\right)+\left(ab-b^2\right)\left(a^2+1\right)=0\)
\(\Leftrightarrow ab^3+ab-a^2b^2-a^2+a^3b+ab-a^2b^2-b^2=0\)
\(\Leftrightarrow ab^3+a^3b-2a^2b^2+2ab-a^2-b^2=0\)
\(\Leftrightarrow\left(ab^3+a^3b-2a^2b^2\right)-\left(a^2-2ab+b^2\right)=0\)
\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a-b\right)^2=0\)
\(\Leftrightarrow ab\left(a-b\right)^2-\left(a-b\right)^2=0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\ab-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=b\\ab=1\end{cases}}\Leftrightarrow a=b=\pm1\)
Lại có:
\(M=\frac{1}{a^{2021}+1}+\frac{1}{b^{2021}+1}\left(ĐK:a\ne-1;b\ne-1\right)\)
Mà ta có được \(a=b=\pm1\)nên thay \(a=b=1\)vào biểu thức M, ta được:
\(M=\frac{1}{1^{2021}+1}+\frac{1}{1^{2021}+1}=\frac{1}{1+1}+\frac{1}{1+1}=\frac{1}{2}+\frac{1}{2}=1\)
Vậy \(M=1\).

A B C D 4 9
a, Xét tam giác ADB và tam giác BDC ta có :
^ADB = ^BCD ( gt )
^ABD = ^BDC ( so le trong )
Vậy tam giác ADB ~ tam giác BDC ( g.g )
à thanks mình xin lỗi nhé !
a, Xét tam giác HAC và tam giác ABC ta có
^AHC = ^BAC = 900
^C _ chung
Vậy tam giác HAC ~ tam giác ABC ( g.g ) (1)
\(\Rightarrow\frac{HA}{AB}=\frac{AC}{BC}\) ( tí số đồng dạng ) (3)
Xét tam giác HAB và tam giác ABC ta có :
^AHB = ^BAC = 900
^B _ chung
Vậy tam giác HAB ~ tam giác ABC ( g.g ) (2)
Từ (1) ; (2) suy ra : tam giác HAC ~ tam giác HAB
b, Từ (3) ta có : \(\frac{HA}{15}=\frac{20}{25}\)( BC = 25 cm theo Py ta go )
\(\Rightarrow HA=\frac{15.20}{25}=12\)cm
A B C H M N I