x^2-2xy+tx-2ty phân tích nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=-\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{a^2b-a^2c+b^2c-b^2a+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(b-a\right)}\)
\(=-\frac{-c\left(a^2-b^2\right)+ab\left(a-b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-\frac{\left(a-b\right)\left[-c\left(a+b\right)+ab+c^2\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{\left(a-b\right)\left(-ac-bc+ab+c^2\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{-\left(a-b\right)\left[-b\left(c-a\right)+c\left(c-a\right)\right]}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=-\frac{\left(a-b\right)\left(c-a\right)\left(-b+c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{\left(a-b\right)\left(c-a\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

x2-2xy+y2-xz+yz
=(x2-2xy+y2)-(xz-yz)
=(x-y)2-z(x-y)
=(x-y)(x-y-z)
HT
x2 -2xy + y2 -xz +yz
= ( x-y)2 - ( xz -yz )
= ( x -y )2 -z( x -y )
= ( x-y )( x-y-z )
* Sxl


x2 - y2 + 2yz - z2
= x2 - ( y2 -2yz + z2 )
= x2 - ( y-z )2
= ( x-y +z ) ( x+y -z)
x2 - y2 + 2yz - z2
= x2 - ( y2 - 2yz + z2 )
= x2 - ( y - z )2
= ( x -y + z )( x + y - z )

x2 - 6xy - 25z2 + 9y2
= ( x2 - 6xy + 9y2 ) - 25z2
= ( x - 3y ) 2 - ( 5z)2
= ( x -3y - 5z ) ( x -3y + 5z )
x2 - 6xy - 25z2 + 9y2
= ( x2 - 6xy + 9y2 ) - 25z2
= ( x - 3y )2 - ( 5z )2
= ( x - 3y - 5z )( x - 3y + 5z )
#TNQ



\(x^2-2xy+y^2-\left(2z\right)^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\times\left(x-y+2z\right)\)
XIN TiiCK
x^2-2xy+tx-2ty
=(x^2-2xy)+(tx-2ty )
=x.(x-2y)+t.(x-2y)
=(x-2y).(x+t)
\(x^2-2xy+tx-2ty\)
\(=x\left(x-2y\right)+t\left(x-2y\right)\)
\(=\left(x+t\right)\left(x-2y\right)\)