K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Ta có: \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\Rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) (\(a;b;c\ne0\) )

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1-2\left(\frac{ayz+bxz+cxy}{abc}\right)=1-2.0=1\)

=> đpcm

12 tháng 6 2020

á em đổi biến lộn ạ. Em định viết H;U;Y  cho đúng tên mình mà quen tay lộn vào Y;Z ạ

Đặt \(\left(\frac{x}{a};\frac{y}{b};\frac{z}{c}\right)\rightarrow\left(H;U;Y\right)\)

Khi đó ta có:

\(H+U+Y=1;\frac{1}{H}+\frac{1}{U}+\frac{1}{Y}=0\Rightarrow HU+UY+YH=0\)

Thay vào thì :

\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\left(H+U+Y\right)^2-2\left(HU+UY+YH\right)=1\)

Vậy ta có đpcm

7 tháng 10 2016

A B C D K H I O M

Gọi O là giao điểm của hai đường chéo AC và BD. Từ O kẻ OM song song với CI , suy ra OM cũng song song với KD và BH

Ta có \(\hept{\begin{cases}OA=OC\\OM\text{//}CI\end{cases}\Rightarrow}\)OM là đường trung bình tam giác ACI => \(CI=2OM\left(1\right)\)

Lại có \(\hept{\begin{cases}DK\text{//}OM\text{//}BH\\OD=OB\end{cases}\Rightarrow}\)OM là đường trung bình của hình thang BHKD

\(\Rightarrow KD+BH=2OM\left(2\right)\)

Từ (1) và (2) suy ra \(BH+CI+DK=4OM\le4OA\left(\text{hằng số}\right)\)

Vậy \(BH+CI+KD\) đạt giá trị lớn nhất bằng 4OA khi \(\hept{\begin{cases}OM=OA\\OM\perp d\end{cases}}\Rightarrow\)đường thẳng d vuông góc với CA tại A

9 tháng 10 2016

h di ma 

19 tháng 5 2018

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(VT=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\)

\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\)

Cần chứng minh \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)

\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{xz}}{xz\left(4-xz\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)

Cauchy-Schwarz: \(\left(x+y+z\right)^2\ge\left(1+1+1\right)\left(xy+yz+xz\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)^2\)

\(\Leftrightarrow3\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{xz}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)

\(\Leftrightarrow\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c\left(4-c^2\right)}\ge1\left(\odot\right)\)

Ta có BĐT phụ: \(\dfrac{a}{a^2\left(4-a^2\right)}\le-\dfrac{1}{9}a+\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{\left(a-1\right)^2\left(a^2-2a-9\right)}{9a\left(a-2\right)\left(a+2\right)}\le0\forall0< a\le1\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế

\(VT_{\left(\odot\right)}\ge\dfrac{-\left(a+b+c\right)}{9}+\dfrac{4}{9}\cdot3\ge\dfrac{-3}{9}+\dfrac{12}{9}=1=VP_{\left(\odot\right)}\)

Dấu "=" <=> x=y=z=1

23 tháng 4 2020

em là pô pô nê người con của Thái Nguyên

7 tháng 11 2017

GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)

Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1

\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà  (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)

2 tháng 6 2020

Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)

Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3 

Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)

\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)

\(=\sqrt{3}\text{​​}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)

6 tháng 2 2020

 Đoạn cuối của cô Nguyễn Linh Chi em có 1 cách biến đổi tương đương cũng khá ngắn gọn ạ

\(RHS\ge2\cdot\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

Theo đánh giá của cô Nguyễn Linh Chi thì \(xy+yz+zx\ge x+y+z\ge3\)

Ta cần chứng minh:\(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\ge\frac{1}{2}\)

Thật vậy,BĐT tương đương với:

\(2\left(x+y+z\right)^2\ge x^2+y^2+z^2-x-y-z+18\)

\(\Leftrightarrow\left(x+y+z\right)^2+x+y+z-12\ge0\)

\(\Leftrightarrow\left(x+y+z+4\right)\left(x+y+z-3\right)\ge0\) ( luôn đúng với \(x+y+z\ge3\) )

=> đpcm

6 tháng 2 2020

Áp dụng: \(AB\le\frac{\left(A+B\right)^2}{4}\)với mọi A, B

Ta có:

\(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\le\frac{\left(x+2+x^2-2x+4\right)^2}{4}\)

=> \(\sqrt{x^3+8}\le\frac{x^2-x+6}{2}\)

=> \(\frac{x^2}{\sqrt{x^3+8}}\ge\frac{2x^2}{x^2-x+6}\)

Tương tự 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\)

\(\ge\frac{2x^2}{x^2-x+6}+\frac{2y^2}{y^2-y+6}+\frac{2z^2}{z^2-z+6}\)

\(=2\left(\frac{x^2}{x^2-x+6}+\frac{y^2}{y^2-y+6}+\frac{z^2}{z^2-z+6}\right)\)

\(\ge2\frac{\left(x+y+z\right)^2}{x^2-x+6+y^2-y+6+z^2-z+6}\)

\(=2\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)(1)

Ta có: \(x+y+z\le xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) với mọi x, y, z 

=> \(\left(x+y+z\right)^2-3\left(x+y+z\right)\ge0\)

=> \(\left(x+y+z\right)\left(x+y+z-3\right)\ge0\)

=> \(x+y+z\ge3\)với mọi x, y, z dương

Và \(x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le\left(x+y+z\right)^2-2\left(x+y+z\right)\)

Do đó: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2-\left(x+y+z\right)+18}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\)

Đặt: x + y + z = t ( t\(\ge3\))

Xét hiệu: \(\frac{t^2}{t^2-3t+18}-\frac{1}{2}=\frac{t^2+3t-18}{t^2-3t+18}=\frac{\left(t-3\right)\left(t+6\right)}{\left(t-\frac{3}{2}\right)^2+\frac{63}{4}}\ge0\)với mọi t \(\ge3\)

Do đó: \(\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2-3\left(x+y+z\right)+18}\ge\frac{1}{2}\)(2)

Từ (1); (2) 

=> \(\frac{x^2}{\sqrt{x^3+8}}+\frac{y^2}{\sqrt{y^3+8}}+\frac{z^2}{\sqrt{z^3+8}}\ge2.\frac{1}{2}=1\)

Dấu "=" xảy ra <=> x= y = z = 1

7 tháng 11 2016

Đặt \(AB=a,AC=b\). Ta có: \(BC^2=a^2+b^2.\)
Áp dụng hệ thức lượng trong tam giác vuông :
\(BD.BC=AB^2\Rightarrow BD=\frac{AB^2}{BC}=\frac{a^2}{\sqrt{a^2+b^2}}\).
Tương tự \(CD=\frac{b^2}{\sqrt{a^2+b^2}}\).
Có \(MB.AB=BD^2\Rightarrow MB=\frac{BD^2}{AB}=\frac{a^4}{\left(a^2+b^2\right).a}=\frac{a^3}{a^2+b^2}\).
Tương tự ta tính được \(CN=\frac{b^3}{a^2+b^2}\).
Vậy \(\sqrt[3]{BM^2}+\sqrt[3]{CN^2}=\sqrt[3]{\left(\frac{a^3}{a^2+b^2}\right)^2}+\sqrt[3]{\left(\frac{b^3}{a^2+b^2}\right)^2}\)
                                                     \(=a^2.\sqrt[3]{\frac{1}{\left(a^2+b^2\right)^2}}+b^2.\sqrt[3]{\frac{1}{\left(a^2+b^2\right)^2}}\)
                                                     \(=\left(a^2+b^2\right).\sqrt[3]{\frac{1}{\left(a^2+b^2\right)^2}}\)

                                                        \(=\sqrt[3]{a^2+b^2}=\sqrt[3]{BC^2}\) ( Đpcm)

5 tháng 11 2016

bạn vẽ tam giác vuông nha

A/ sử dụng địn lí ta két trong tam giác nha

A B C D M N

Áp dụng bđt AM-GM ta có

\(P\ge3\sqrt[3]{\frac{xyz\left(xy+1\right)^2.\left(yz+1\right)^2.\left(zx+1\right)^2}{x^2y^2z^2\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}}=3\sqrt[3]{\frac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}=A\)

  Ta có   \(A=3\sqrt[3]{\left(\frac{xy+1}{x}\right)\left(\frac{yz+1}{y}\right)\left(\frac{zx+1}{z}\right)}=3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

Áp dụng bđt AM-GM ta có

\(A\ge3\sqrt[3]{8\sqrt{\frac{xyz}{xyz}}}=3.2=6\)

\(\Rightarrow P\ge6\)

Dấu "=" xảy ra khi x=y=z=\(\frac{1}{2}\)

18 tháng 2 2020

Làm tiếp bài ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★ chớ hình như bị ngược dấu ó.Do mình gà nên chỉ biết cô si mù mịt thôi ạ

\(3\sqrt[3]{\left(y+\frac{1}{x}\right)\left(z+\frac{1}{y}\right)\left(x+\frac{1}{z}\right)}\)

\(=3\sqrt[3]{\left(y+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}+\frac{1}{4x}\right)\left(z+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}+\frac{1}{4y}\right)\left(x+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}+\frac{1}{4z}\right)}\)

\(\ge3\sqrt[3]{5\sqrt[5]{\frac{y}{256x^4}}\cdot5\sqrt[5]{\frac{z}{256y^4}}\cdot5\sqrt[5]{\frac{x}{256z^4}}}\)

\(=3\sqrt[3]{125\sqrt[5]{\frac{xyz}{256^3\left(xyz\right)^4}}}\)

\(=15\sqrt[3]{\sqrt[5]{\frac{1}{256^3\left(xyz\right)^3}}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\left(\frac{x+y+z}{3}\right)^9}}\)

\(\ge15\sqrt[15]{\frac{1}{256^3\cdot\frac{1}{2^9}}}=\frac{15}{2}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{2}\)

28 tháng 4 2016

x2+2(m-1)x+m2+1=0 (*) Để phương trình (*) có 2 nghiệm phân biệt khi: \(\Delta>0\) hay \(\Delta=4\left(m-1\right)^2-4\left(m^2+1\right)>0\Leftrightarrow-8m>0\Leftrightarrow m<0\left(I\right)\)

Theo giả thiết giả sử ta có: \(x_1>1,x_2<1\Rightarrow\left(x_1-1\right)\left(x_2-1\right)<0\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1<0\left(II\right)\) 

Theo Vi-et ta có: \(x_1x_2=m^2+1;x_1+x_2=-2\left(m-1\right)\) Thay vào (II) Ta có: \(m^2+1+2\left(m-1\right)+1<0\Leftrightarrow m\left(m+2\right)<0\)
Hay -2<m<0 Thỏa mãn cả (I).
Vậy -2<m<0 Thì phương trình (*) thỏa mãn điều kiện bài ra

22 tháng 11 2016

áp dụng là ra ngay

27 tháng 2 2020

ĐK:...

\(\frac{2x}{2.3\sqrt{x+2y-1}-8}+\frac{2y}{2.3.\sqrt{y+2z-1}-8}+\frac{2z}{2.3.\sqrt{z+2x-1}-8}\)nhân với 2 cả tử và mẫu

\(\ge\frac{2x}{x+2y-1+9-8}+\frac{2y}{y+2z-1+9-8}+\frac{2z}{z+2x-1+9-8}\)cô  - si

\(=\frac{2x}{x+2y}+\frac{2y}{y+2z}+\frac{2z}{z+2x}\)

\(=\frac{2x^2}{x^2+2xy}+\frac{2y^2}{y^2+2zy}+\frac{2z^2}{z^2+2zx}\)

\(\ge2.\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=2\)

Dấu "=" xảy ra <=> x = y = z =10/3

28 tháng 2 2020

cảm ơn bạn