K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

t lắm tắt luôn nhé có nhiều  câu quá 

áp dụng bdt cô si ta có

a)  \(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{1.xyz}{xyz}}=4\)

vậy Min của T là 4 dấu = xảy ra khi x=y=z=1

b)  

áp dụng BDT cosi ta có

\(x+y+Z\ge3\sqrt[3]{xyz}\)

\(\frac{3}{xyz}+3xyz\ge2\sqrt{\frac{3.3xyz}{xyz}}=6\)

+ vế với vế ta được

\(T+3xyz\ge3\sqrt[3]{xyz}+6\)

\(T\ge3\sqrt[3]{xyz}+6-3xyz\)

có  \(xyz\le\frac{\left(x+y+Z\right)^2}{27}\Rightarrow-xyz\ge-\frac{\left(x+y+z\right)^2}{27}\) cùng dấu > thay vào được

\(T\ge3\sqrt[3]{xyz}+6-3\frac{\left(x+y+z\right)^3}{27}\)

Có \(x^2+1\ge2x\)

       \(y^2+1\ge2y\)

      \(z^2+1\ge2z\)  (cosy)

+ vế với vế ta được

\(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

\(3\ge\left(x+y+z\right)\Rightarrow-\left(x+y+z\right)\ge-3\) cùng dấu > ta thay được 

\(\Rightarrow T\ge3\sqrt[3]{xyz}+6-3\frac{\left(3\right)^3}{27}\)

\(\Rightarrow T\ge6\) dấu = xảy ra khi x=y=z=1

3) dự đoán của chúa pain x=y=z = \(\frac{1}{\sqrt{3}}\)

thử thay vào

\(\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}+\frac{1}{\frac{1}{\sqrt{3}^3}}\)

số xấu lắm m tự làm đi tương tự câu 1) 2) 

23 tháng 1 2018

1)  dự đoán của chúa Pain x=y=z=1 

áp dụng BDT cô si ta có

\(x+y+z+\frac{1}{xyz}\ge4\sqrt[4]{\frac{xyz}{xyz}}=4.\)

Vậy Min là 4 dấu = xảy ra khi x=y=z=1

2  chia cả tử cả mẫu cho  \(x^2+y^2+z^2=3\) ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{3}{xyz}\)

thay số ta được

\(\left(x+y+z+\frac{x}{yz}+\frac{z}{xy}+\frac{y}{zx}\right)\)

áp dụng Cô si ta được

\(VT\ge6\sqrt[6]{\frac{x^2y^2z^2}{y^2z^2x^2}}=6\)

vậy Min là 6 dấu = xảy ra khi x=y=z=1

3) TƯỢNG TỰ cậu 2

chia xyz cho 2 vế 

\(x^2+y^2+z^2=1\)

ta được

\(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}=\frac{1}{xyz}\)

thay số

\(\left(x+y+z\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\)

áp dụng BDT cô si ta được

\(\left(\frac{x}{\frac{1}{\sqrt{3}^2}}+\frac{y}{\frac{1}{\sqrt{3}^2}}+\frac{x}{\frac{1}{\sqrt{3}^2}}\right)+\left(\frac{x}{yz}+\frac{y}{xz}+\frac{z}{xy}\right)\ge....\)

tự làm

22 tháng 6 2017

Ờ thì AM-GM (là Cô si ko âm đây)

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}\cdot\frac{y+z}{4}}=2\cdot\frac{x}{2}=x\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y;\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng theo vế 3 BĐT trên ta có:

\(P+\frac{2\left(x+y+z\right)}{4}\ge x+y+z\Leftrightarrow P\ge1\)

ĐẲng thức xảy ra khi \(x=y=z=\frac{2}{3}\)

21 tháng 6 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dưới dạng Engel ta có :

\(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{2}{3}\)

Vậy \(P_{min}=1\) tại \(x=y=z=\frac{2}{3}\)

18 tháng 10 2020

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

16 tháng 6 2023

Ta có

\(A=\dfrac{4}{x+1}+\dfrac{9}{y+2}+\dfrac{25}{z+3}\)

\(A=\dfrac{2^2}{x+1}+\dfrac{3^2}{y+2}+\dfrac{5^2}{z+3}\)

\(A\ge\dfrac{\left(2+3+5\right)^2}{x+1+y+2+z+3}\) (BĐT Schwarz)

\(A\ge\dfrac{10^2}{10}=10\) (vì \(x+y+z=4\))

ĐTXR \(\Leftrightarrow\dfrac{2}{x+1}=\dfrac{3}{y+2}=\dfrac{5}{z+3}\)

\(\Rightarrow\dfrac{2}{x+1}=\dfrac{3}{y+2}=\dfrac{5}{z+3}=\dfrac{2+3+5}{z+1+y+2+z+3}=1\). Dẫn đến \(\left\{{}\begin{matrix}x=1\\y=1\\z=2\end{matrix}\right.\). Vậy, GTNN của A là 10 khi \(\left(x,y,z\right)=\left(1,1,2\right)\)

16 tháng 6 2019

https://diendantoanhoc.net/topic/182493-%C4%91%E1%BB%81-thi-tuy%E1%BB%83n-sinh-v%C3%A0o-l%E1%BB%9Bp-10-%C4%91hsp-h%C3%A0-n%E1%BB%99i-n%C4%83m-2018-v%C3%B2ng-2/

16 tháng 6 2019

bài này năm trrong đề thi tuyển sinh vào lớp 10 ĐHSP Hà Nội Năm 2018 (vòng 2) bn có thể tìm đáp án trên mạng để tham khảo

19 tháng 6 2016

Ta có : \(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow-\sqrt{2}\le B\le\sqrt{2}\)

Vậy \(MinB=-\sqrt{2}\Leftrightarrow x=y=z=-\frac{\sqrt{2}}{3}\)

\(MaxB=\sqrt{2}\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)

12 tháng 7 2017

a)

\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)

\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)

\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)

Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)

Nên \(x+y+2=0\Rightarrow x+y=-2\)

Ta có :

\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)

Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)

\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)

hay \(M\le-2\)

Dấu "=" xảy ra khi \(x=y=-1\)

                    Vậy \(Max_M=-2\)khi \(x=y=-1\)

12 tháng 7 2017

c)  ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^  , mình làm bài này với điều kiện x ,y ,z ko âm nhé )

Ta có :

\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)

\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)

\(\Rightarrow y=2-x\)

Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)

\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)

\(\Leftrightarrow z=\frac{4-x}{3}\)

Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :

\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)

\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)

\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))

Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )

Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)