K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)=18\)

\(\Leftrightarrow\left(4x^2+8x+3\right)\left(x^2+2x+1\right)-18=0\)

\(\Leftrightarrow\left[4\left(x^2+2x\right)+3\right]\left(x^2+2x+1\right)-18=0\)

Đặt \(t=x^2+2x\)ta có

\(\left(4t+3\right)\left(t+1\right)-18=0\)

\(\Leftrightarrow4t^2+7x-15=0\)

\(\Leftrightarrow4t^2+12t-5t-15=0\)

\(\Leftrightarrow4t\left(t+3\right)-5\left(t+3\right)=0\)

\(\Leftrightarrow\left(t+3\right)\left(4t-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+3=0\\4t-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=-3\\t=\frac{5}{4}\end{cases}}}\)

Nếu \(t=-3\Rightarrow x^2+2x=-3\)

\(\Leftrightarrow x^2+2x+3=0\)

\(\Rightarrow\)x vô nghiệm vì \(x^2+2x+3>0\)với mọi x

Nếu \(t=\frac{5}{4}\Rightarrow x^2+2x=\frac{5}{4}\)

\(\Leftrightarrow x^2+2x-\frac{5}{4}=0\)

\(\Leftrightarrow4x^2+8x-5=0\)

\(\Leftrightarrow4x^2-2x+10x-5=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{5}{2}\end{cases}}}\)

Vậy \(S=\left\{-\frac{5}{2};\frac{1}{2}\right\}\)

P/s tham khảo nha

AH
Akai Haruma
Giáo viên
22 tháng 8 2023

Lời giải:

PT $\Leftrightarrow 4x^2+4x+1=3(x^2-4)+18$

$\Leftrightarrow 4x^2+4x+1=3x^2+6$

$\Leftrightarrow x^2+4x-5=0$

$\Leftrightarrow (x-1)(x+5)=0$

$\Leftrightarrow x-1=0$ hoặc $x+5=0$

$\Leftrightarrow x=1$ hoặc $x=-5$

22 tháng 8 2023

\(\left(2x+1\right)^2=3\left(x-2\right)\left(x+2\right)+18\)

\(\Leftrightarrow4x^2+4x+1=3\left(x^2-4\right)+18\)

\(\Leftrightarrow4x^2+4x+1=3x^2-12+18\)

\(\Leftrightarrow4x^2+4x+1=3x^2+6\)

\(\Leftrightarrow4x^2-3x^2+4x=6-1\)

\(\Leftrightarrow x^2+4x=5\)

\(\Leftrightarrow x^2+4x-5=0\)

\(\Leftrightarrow x^2+5x-x-5=0\)

\(\Leftrightarrow x\left(x+5\right)-\left(x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{-5;1\right\}\)

Câu 1: 

a) Ta có: 7x+21=0

\(\Leftrightarrow7x=-21\)

hay x=-3

Vậy: S={-3}

b) Ta có: 3x-2=2x-3

\(\Leftrightarrow3x-2-2x+3=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

c) Ta có: 5x-2x-24=0

\(\Leftrightarrow3x=24\)

hay x=8

Vậy: S={8}

Câu 2: 

a) Ta có: \(\left(2x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{2};1\right\}\)

b) Ta có: \(\left(2x-3\right)\left(-x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=7\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};7\right\}\)

c) Ta có: \(\left(x+3\right)^3-9\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-9\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+3-3\right)\left(x+3+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-6\end{matrix}\right.\)

Vậy: S={0;-3;-6}

14 tháng 3 2023

Bạn nên dùng công thức trực quan cho bài toán như thế này nhé.

17 tháng 8 2017

2x-3=x+1/2

17 tháng 8 2017

a,2x-3=x+1/2                       b,4x-(x+1/2)=2x+(1/2-5)                           c,2/3-1/3(x-2/3)-1/2(2x+1)=5

2x-x =1/2+3                           4x-x-1/2=2x+1/2-5                             d,(x+1/2).(x-3/4)=0

x=7/2                                4x-x-2x  =1/2-5+1/2                                 \(\orbr{\begin{cases}x+\frac{1}{2}=0\\x-\frac{3}{4}=0\end{cases}}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{4}\end{cases}}\)

                                            x=-4

e,(2x-1)(3x+1/5)=0

\(\orbr{\begin{cases}2x-1=0\\3x+\frac{1}{5}=0\end{cases}}\orbr{\begin{cases}2x=1\\3x=\frac{1}{5}\end{cases}}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{15}\end{cases}}\)

f, 4x2-2x=0

Các câu mk chưa làm thì bạn cứ chờ để mk suy nghĩ.

20 tháng 1 2017

Giải phương trình:

a) (x+2)- (x-2)= 12x(x-1) - 8

<=> (x+ 3.x2.2 + 3.x.2+ 23) - (x- 3.x2.2 + 3.x.2- 23) - [12x(x-1) - 8] = 0

<=> (x+ 6x+ 12x + 8) - (x- 6x+ 12x - 8) - (12x- 12x - 8) = 0

<=> x+ 6x+ 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0

<=> 12x +32 = 0

<=> x =  \(\frac{-32}{12}\) = \(-2\frac{2}{3}\)         

                                                 Vậy phương trình có nghiệm duy nhất là  \(-2\frac{2}{3}\)

b) (3x-1)- 5(2x+1)+ (6x-3)(2x+1) = (x-1)2

<=> (9x- 6x + 1) - 5(4x+ 4x + 1) + 3(2x - 1)(2x + 1) - (x- 2x +1) = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 12x2 - 3 - x+ 2x -1 = 0

<=> -24x - 8 = 0

<=> x = \(\frac{-8}{24}\) = \(\frac{-1}{3}\)  

                  Vậy phương trình có nghiệm duy nhất là \(\frac{-1}{3}\)

 

\(m\left(x\right)+h\left(x\right)=g\left(x\right)-5\)

\(\Leftrightarrow m\left(x\right)=g\left(x\right)-h\left(x\right)-5\)

\(\Leftrightarrow m\left(x\right)=4x^2+3x+1-3x^2+2x+3-5\)

\(\Leftrightarrow m\left(x\right)=x^2+5x-1\)