K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 1

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2=2-xy\)

\(\Rightarrow2-xy\ge0\)

\(\Rightarrow xy\le2\)

\(A_{max}=2\) khi \(\left(x;y\right)=\left(1;2\right);\left(-1;-2\right)\)

NV
21 tháng 4 2023

Em kiểm tra đề là \(\dfrac{y^2}{4}\) hay \(\dfrac{y^4}{4}\)

Nếu đề đúng là \(\dfrac{y^4}{4}\) thì có thể coi như là không giải được

NV
21 tháng 4 2023

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2-xy+\dfrac{y^2}{4}\right)+xy=2\)

\(\Leftrightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x-\dfrac{y}{2}\right)^2+xy\ge xy\)

\(\Rightarrow P_{max}=2023\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x-\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;-2\right);\left(1;2\right)\)

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\Leftrightarrow\left(x^2+\dfrac{1}{x^2}-2\right)+\left(x^2+xy+\dfrac{y^2}{4}\right)-xy=2\)

\(\Rightarrow2=\left(x-\dfrac{1}{x}\right)^2+\left(x+\dfrac{y}{2}\right)^2-xy\ge-xy\)

\(\Rightarrow xy\ge-2\Rightarrow P\ge2019\)

\(P_{min}=2019\) khi \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\\x+\dfrac{y}{2}=0\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-1;2\right);\left(1;-2\right)\)

6 tháng 9 2021

Ta có \(2=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Leftrightarrow xy\ge1\)

\(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{x^2+y^4+2x^2y}\\ \le\dfrac{1}{4\sqrt[4]{x^6y^6}}+\dfrac{1}{4\sqrt[4]{x^6y^6}}=\dfrac{1}{4xy}+\dfrac{1}{4xy}\\ \le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow x=y=1\)

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

16 tháng 1 2021

Áp dụng BĐT BSC:

\(F=\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

\(=\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{4}.4=1\)

\(maxF=1\Leftrightarrow x=y=z=\dfrac{3}{4}\)

17 tháng 8 2023

Ta thấy \(2x^2< 4\) \(\Leftrightarrow x^2< 2\) \(\Leftrightarrow x^2=1\) (do \(x\ne0\))

Thế vào pt đề bài, ta có \(3+\dfrac{y^2}{4}=4\) 

\(\Leftrightarrow\dfrac{y^2}{4}=1\)

\(\Leftrightarrow y^2=4\)

\(\Leftrightarrow y=\pm2\)

Vậy, các cặp số (x; y) thỏa ycbt là \(\left(1;2\right);\left(-1;-2\right);\left(1;-2\right);\left(-1;2\right)\)

 

17 tháng 8 2023

a

29 tháng 11 2021

\(1,\dfrac{1}{1+x}=1-\dfrac{1}{1+y}+1-\dfrac{1}{1+z}=\dfrac{y}{1+y}+\dfrac{z}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Cmtt: \(\dfrac{1}{1+y}\ge2\sqrt{\dfrac{xz}{\left(1+x\right)\left(1+z\right)}};\dfrac{1}{1+z}\ge2\sqrt{\dfrac{xy}{\left(1+x\right)\left(1+y\right)}}\)

Nhân VTV

\(\Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge8\sqrt{\dfrac{x^2y^2z^2}{\left(1+x\right)^2\left(1+y\right)^2\left(1+z\right)^2}}\\ \Leftrightarrow\dfrac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\dfrac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\\ \Leftrightarrow8xyz\le1\Leftrightarrow xyz\le\dfrac{1}{8}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{2}\)

29 tháng 11 2021

\(2,\\ a,2x^2+y^2-2xy=1\\ \Leftrightarrow\left(x-y\right)^2+x^2=1\\ \Leftrightarrow\left(x-y\right)^2=1-x^2\ge0\\ \Leftrightarrow x^2\le1\Leftrightarrow\sqrt{x^2}\le1\Leftrightarrow\left|x\right|\le1\)

7 tháng 1 2019

Hình như hơi sai đề

7 tháng 1 2019

ko đúng đấy chứ

mình nhầm :

2) Vì /2x-3y/2015 lớn h+n hoặc bằng 0

và (x+y+x)2014 lớn hơn hoặc bằng 0 (với mọi x , y )

Mà /2x-3y/2015+ (x+y+z)2014 = 0

=) x+y+z = 0 (1)

=)2x- 3y = 0

=) x+y+x =0

=) 2(x+y+x)=0

=) 2x + 2y + 2x = 0

=) 3y+2y+3y = 0

=) 7y=0 =)y=0

thay y =0 vào (1)

=) ta có : x+y+x=0

=)x+0+x = 0

=) 2x=0 =) x=0

Vậy (x,y) = (0,0)

NV
9 tháng 7 2021

a.

\(y=\dfrac{3}{2}sin2x-2\left(cos^2x-sin^2x\right)+5=\dfrac{3}{2}sin2x-2cos2x+5\)

\(=\dfrac{5}{2}\left(\dfrac{3}{5}sin2x-\dfrac{4}{5}cos2x\right)+5=\dfrac{5}{2}sin\left(2x-a\right)+5\) (với \(cosa=\dfrac{3}{5}\))

\(\Rightarrow-\dfrac{5}{2}+5\le y\le\dfrac{5}{2}+5\)

b.

\(\Leftrightarrow y.sinx-2y.cosx+4y=3sinx-cosx+1\)

\(\Leftrightarrow\left(y-3\right)sinx+\left(1-2y\right)cosx=1-4y\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(y-3\right)^2+\left(1-2y\right)^2\ge\left(1-4y\right)^2\)

\(\Leftrightarrow11y^2+2y-9\le0\)

\(\Leftrightarrow-1\le y\le\dfrac{9}{11}\)

NV
9 tháng 7 2021

c.

Do \(x^2+y^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)

\(\Rightarrow y=\dfrac{2\left(sin^2a+6sina.cosa\right)}{1+2sina.cosa+cos^2a}=\dfrac{1-cos2a+6sin2a}{1+sin2a+\dfrac{1+cos2a}{2}}=\dfrac{2-2cos2a+12sin2a}{3+2sin2a+cos2a}\)

\(\Leftrightarrow3y+2y.sin2a+y.cos2a=2-2cos2a+12sin2a\)

\(\Leftrightarrow\left(2y-12\right)sin2a+\left(y+2\right)cos2a=2-3y\)

Theo điều kiện có nghiệm của pt bậc nhất theo sin2a, cos2a:

\(\left(2y-12\right)^2+\left(y+2\right)^2\ge\left(2-3y\right)^2\)

\(\Leftrightarrow y^2+8y-36\le0\)

\(\Rightarrow-4-2\sqrt{13}\le y\le-4+2\sqrt{13}\)