K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

Vì \(a\ge b\ge c\ge1\) ta có bổ đề

\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)

Lợi dụng cái trên ta được

\(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}+\frac{1}{1+abc}\)

\(\ge\frac{2}{1+\sqrt{a^3b^3}}+\frac{2}{1+\sqrt{abc^4}}\ge\frac{4}{1+\sqrt[4]{a^4b^4c^4}}=\frac{4}{1+abc}\)

PS: Đề sai nên t sửa luôn đề rồi nhé

\(\Rightarrow\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)

25 tháng 8 2018

khó quá bạn ơi mình cần thêm thời gian để làm 

25 tháng 8 2018

nhanh lên nhé

NV
11 tháng 2 2020

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2+b^2+a^2b^2\right)}\ge\frac{2}{1+ab}\)

\(\Leftrightarrow\left(1+ab\right)\left(2+a^2+b^2\right)\ge2a^2b^2+2a^2+2b^2+2\)

\(\Leftrightarrow ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)

b/ \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

\(\Rightarrow\frac{1}{1+a^4}+\frac{3}{1+b^4}\ge\frac{4}{1+ab^3}\)

Hoàn toàn tương tự: \(\frac{1}{1+b^4}+\frac{3}{1+c^4}\ge\frac{4}{1+bc^3}\); \(\frac{1}{1+c^4}+\frac{3}{1+a^4}\ge\frac{4}{1+a^3c}\)

Cộng vế với vế ta có đpcm

2 tháng 2 2021

Trước hết, ta chứng minh bổ đề sau: Nếu \(a,b\ge1\)thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(\frac{1}{1+a}-\frac{1}{1+\sqrt{ab}}\right)+\left(\frac{1}{1+b}-\frac{1}{1+\sqrt{ab}}\right)\ge0\)\(\Leftrightarrow\frac{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}{\left(1+a\right)\left(1+\sqrt{ab}\right)}+\frac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\sqrt{b}\left(1+a\right)\left(\sqrt{a}-\sqrt{b}\right)-\sqrt{a}\left(1+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)\(\Leftrightarrow\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{ab}-1\right)}{\left(1+a\right)\left(1+b\right)\left(1+\sqrt{ab}\right)}\ge0\)*đúng do \(\sqrt{ab}\ge1\)(vì a,b\(\ge1\))*

Áp dụng bổ đề trên, ta được: \(\left(\frac{1}{1+a^4}+\frac{1}{1+b^4}\right)+\frac{2}{1+b^4}\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^4}\ge\frac{4}{1+ab^3}\)

Tương tự: \(\left(\frac{1}{1+b^4}+\frac{1}{1+c^4}\right)+\frac{2}{1+c^4}\ge\frac{4}{1+bc^3}\)\(\left(\frac{1}{1+c^4}+\frac{1}{1+a^4}\right)+\frac{2}{1+a^4}\ge\frac{4}{1+ca^3}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)(đpcm)

Ta có

\(A=\left(a-b+c\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{c}+\frac{c}{a}\right)-\left(\frac{a}{b}+\frac{b}{a}\right)-\left(\frac{b}{c}+\frac{c}{b}\right)\)

áp dụng bđt Cauchy ta có

\(A\ge3+2-2-2=1\)(đpcm)

Dấu "=" xảy ra khi a=b=c=1

7 tháng 6 2019

\(\left(a-b+c\right)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)\ge1\)

\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\left(c+a\right)\ge0\)(đúng)

Vậy bài toán được chứng minh

30 tháng 4 2020

Ta có \(a+b+b+b\ge4\sqrt[4]{abbb}\)(theo BĐT Cosi)

\(\Leftrightarrow a+3b\ge\sqrt[4]{ab^3}\)

\(\Leftrightarrow\frac{a+3b}{4}\ge4\sqrt[4]{ab^3}\)

Mà \(a,b,c\ge1\Rightarrow a+3b\ge4\Rightarrow\frac{a+3b}{4}\ge1\)

\(\Leftrightarrow1+\sqrt[4]{ab^3}\ge1+a\)

\(\Rightarrow\frac{1}{1+\sqrt[4]{ab^3}}\le\frac{1}{1+a}\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{1+\sqrt[4]{bc^3}}=\frac{1}{1+b}\left(2\right)\\\frac{1}{1+\sqrt[4]{ca^3}}=\frac{1}{1+c}\left(3\right)\end{cases}}\)

(1) (2) (3) => \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge\frac{1}{1+\sqrt[4]{ab^3+1}}+\frac{1}{1+\sqrt[4]{bc^3}}+\frac{1}{1+\sqrt[4]{ca^3}}\)(đpcm)

23 tháng 5 2020

help me !!!!!!

23 tháng 5 2020

câu 6 là với mọi a,b,c lớn hơn hoặc bằng 1 nhé

NV
23 tháng 7 2020

\(a;b;c\ge1\Rightarrow\left\{{}\begin{matrix}a^3+1\ge a^2+1\\b^3+1\ge b^2+1\\c^3+1\ge c^2+1\end{matrix}\right.\)

\(\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\)

Do đó ta chỉ cần chứng minh: \(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)

Sử dụng BĐT quen thuộc: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) với \(xy\ge1\)

Ta có: \(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}+\frac{1}{1+abc}\ge\frac{2}{1+\sqrt{a^3b^3}}+\frac{2}{1+\sqrt{abc^3}}\ge\frac{4}{1+abc}\)

\(\Rightarrow\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
15 tháng 3 2020

Sử dụng BĐT quen thuộc: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) với \(xy\ge1\)

\(2VT\ge\frac{2}{1+a^2b^2}+\frac{2}{1+b^2c^2}+\frac{2}{1+c^2a^2}\)

\(\Rightarrow VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^2a^2}\)

\(\Rightarrow2VT\ge\frac{1}{1+a^2b^2}+\frac{1}{1+b^4}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^4}\frac{1}{1+c^2a^2}+\frac{1}{1+a^4}\)

\(\Rightarrow2VT\ge\frac{2}{1+ab^3}+\frac{2}{1+bc^3}+\frac{2}{1+ca^3}\)

\(\Rightarrow VT\ge\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

23 tháng 7 2020

Chứng minh: 

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\) (1) với  a; b \(\ge\)1

Thật vậy: 

(1) <=> \(\frac{2+a^2+b^2}{1+a^2+b^2+a^2b^2}\ge\frac{2}{1+ab}\)

<=> \(2+a^2+b^2+2ab+a^3b+ab^3\ge2+2a^2+2b^2+2a^2b^2\)

<=> \(a^3b+ab^3+2ab-a^2-b^2-2a^2b^2\ge0\)

<=> \(ab\left(a^2+b^2-2ab\right)-\left(a^2+b^2-2ab\right)\ge0\)

<=> \(\left(ab-1\right)\left(a-b\right)^2\ge0\)đúng với a; b \(\ge\)1

Vậy (1) đúng 

Áp dụng ta có:

\(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+abc}\ge\frac{2}{1+ab}+\frac{2}{1+c\sqrt{abc}}\)

\(=2\left(\frac{1}{1+\left(\sqrt{ab}\right)^2}+\frac{1}{1+\left(\sqrt{c\sqrt{abc}}\right)^2}\right)\ge2.\frac{2}{1+\sqrt{ab}.\sqrt{c\sqrt{abc}}}=\frac{4}{1+\sqrt{abc\sqrt{abc}}}\)

\(\ge\frac{4}{1+\sqrt{abc.abc}}=\frac{4}{1+abc}\)

=> \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{1+abc}\)

Dấu "=" xảy ra <=> a = b = c