K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2015

\(\frac{x}{1+y^2}=\frac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\frac{xy^2}{1+y^2}\)

Áp dụng Côsi: \(1+y^2\ge2y\Rightarrow\frac{xy^2}{1+y^2}\le\frac{xy^2}{2y}=\frac{xy}{2}\Rightarrow-\frac{xy^2}{1+y^2}\ge-\frac{xy}{2}\)

Do đó: \(\frac{x}{1+y^2}\ge x-\frac{xy}{2}\)

Tương tự ta có: \(\frac{y}{1+z^2}\ge y-\frac{yz}{2};\frac{z}{1+x^2}\ge z-\frac{zx}{2}\)

Mà \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zy\right)\ge xy+yz+zx+2\left(xy+yz+zy\right)\)

\(\Rightarrow xy+yz+zx\le\frac{1}{3}\left(x+y+z\right)^2=3\)

 \(\Rightarrow\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge3-\frac{1}{2}.3=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi x = y = z = 1

Vậy GTNN của P là 1

 

15 tháng 4 2019

Bạn kia làm ra kết quả đúng nhưng cách làm thì tào lao nhưng vẫn ra ???

Áp dụng BĐT Cô-si ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)

Tương tự:\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{4}\ge\frac{3}{2}\),\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge\frac{3}{2}\)

Cộng vế với vế của 3 BĐT trên ta được:

\(P+\frac{x+y+z}{2}+\frac{\left(x+y+z\right)+3}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow P+\frac{3}{2}+\frac{6}{4}\ge\frac{9}{2}\)

\(\Leftrightarrow P\ge\frac{3}{2}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2+x}=\frac{x}{2}=\frac{x+1}{4}\\\frac{1}{y^2+y}=\frac{y}{2}=\frac{y+1}{4}\\\frac{1}{z^2+z}=\frac{z}{2}=\frac{z+1}{4},x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy \(P_{min}=\frac{3}{2}\)khi \(x=y=z=1\)

Áp dụng bđt Bunhiacopski ta có

\(P\ge\frac{9}{x^2+y^2+z^2+x+y+z}\ge\frac{9}{2\left(x+y+z\right)}=\frac{9}{6}=\frac{3}{2}.\)

Dấu "=" xảy ra khi x=y=z=1

10 tháng 5 2019

Em có cách này nhưng không chắc

Ta sẽ c/m BĐT phụ sau:\(2x+\frac{1}{x}\ge\frac{x^2}{2}+\frac{5}{2}\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{2x}\le0\) (đúng) (ta chuyển hết VT sang vế phải rồi qui đồng lên)

Thiết lập hai BĐT tương tự và cộng theo vế ta tìm được Min

10 tháng 5 2019

Nói thêm: Do x, y, z dương và \(x^2+y^2+z^2=3\Rightarrow0< x;y;z< \sqrt{3}\) (từ đây ta mới chứng minh được BĐT phụ đúng.

9 tháng 5 2018

Đặt  \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\)

Ta có \(a,b,c>0;a^2+b^2+c^2=1\)

và \(P=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)

\(=\frac{a^2}{a\left(1-a^2\right)}+\frac{b^2}{b\left(1-b^2\right)}+\frac{c^2}{c\left(1-c^2\right)}\)

Áp dụng bất đẳng thức Cô-si cho 3 số dương ta có

\(a^2\left(1-a^2\right)^2=\frac{1}{2}.2a^2.\left(1-a^2\right)\left(1-a^2\right)\)

\(\le\frac{1}{2}\left(\frac{2a^2+1-a^2+1-a^2}{3}\right)^3=\frac{4}{27}\)

\(\Rightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}\Rightarrow\frac{a^2}{a\left(1-a^2\right)}\ge\frac{3\sqrt{3}}{2}a^2\)(1)

Tương tự \(\frac{b^2}{b\left(1-b^2\right)}\ge\frac{3\sqrt{3}}{2}b^2\)(2)

\(\frac{c^2}{c\left(1-c^2\right)}\ge\frac{3\sqrt{3}}{2}c^2\)(3)

từ (1),(2) và (3) ta có \(P\ge\frac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\frac{3\sqrt{3}}{2}\)

Vậy Min của \(P=\frac{3\sqrt{3}}{2}\)Khi x=y=z\(=\sqrt{3}\)

15 tháng 1 2018

bài này bn dùng côsi ngược dấu nhé

15 tháng 1 2018

Áp dụng BĐT AM-GM:

\(\frac{x+1}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\frac{y\left(x+1\right)}{2}=x+1-\frac{xy+y}{2}\)

TƯơng tự cho 2 BĐT còn lại rồi coojgn theo vế:

\(Q\ge x+y+z+3-\frac{xy+yz+xz+x+y+z}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}\ge3\)

"=" <=> x=y=z=1

2 tháng 3 2019

Áp dụng bđt Cô-si có \(\Sigma\left(\frac{x^2}{y+1}+\frac{y+1}{4}\right)\ge\Sigma2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=\Sigma x\)

\(\Rightarrow\Sigma\frac{x^2}{y+1}+\Sigma\frac{y+1}{4}\ge\Sigma x\)

\(\Rightarrow\Sigma\frac{x^2}{y+1}\ge\frac{3\Sigma x}{4}-\frac{3}{4}\)

Theo bđt Cô-si \(\Sigma x\ge3\sqrt[3]{\Pi x}=3\)

\(\Rightarrow\Sigma\frac{x^2}{y+1}\ge\frac{3\Sigma x}{4}-\frac{3}{4}\ge\frac{3.3}{4}-\frac{3}{4}=\frac{6}{4}=\frac{3}{2}\)

   Dấu "='' <=> x = y = z = 1

2 tháng 3 2019

Ta có \(P=\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}\) \(\Rightarrow P+\frac{x+y+z+3}{4}=P+\frac{X+1}{4}+\frac{Y+1}{4}+\frac{Z+1}{4}\)

= \(\left(\frac{x^2}{y+1}+\frac{y+1}{4}\right)+\left(\frac{y^2}{z+1}+\frac{z+1}{4}\right)+\left(\frac{z^2}{x+1}+\frac{x+1}{4}\right)\)

Do các số trong ngoặc đều dương nên áp dụng BĐT Cô - Si, ta có :

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)

Tương tự suy ra \(\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

Vậy P + \(\frac{x+y+z+3}{4}\ge x+y+z\Rightarrow P\ge\frac{3x+3y+3z-3}{4}\left(1\right)\)

Ta có x, y, z > 0 nên theo BĐT Cô - Si, ta có : \(x+y+z\ge3\sqrt[3]{xyz}=3\left(2\right)\)

Từ (1), (2); ta có P \(\ge\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)


 

26 tháng 3 2020

Ta có biểu thức:

\(Q=\frac{x+1}{1+y^2}+\frac{y+1}{1+z^2}+\frac{z+1}{1+x^2}\)

\(=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)+\left(y+1\right)\left(1-\frac{z^2}{z^2+1}\right)+\left(z+1\right)\left(1-\frac{x^2}{x^2+1}\right)\)

\(\ge\left(x+1\right)\left(1-\frac{y}{2}\right)+\left(y+1\right)\left(1-\frac{z}{2}\right)+\left(z+1\right)\left(1-\frac{x}{2}\right)\)

\(\Leftrightarrow Q\ge\left(x+y+z+3\right)-\frac{xy+yz+xz+x+y+z}{2}\)

\(\Leftrightarrow Q\ge6-\frac{xy+yz+xz+3}{2}\)

Mà \(xy+yz+xz\le\frac{\left(x+y+z\right)^2}{3}=\frac{9}{3}=3\)

\(\Rightarrow Q\ge6-\frac{3+3}{2}=3\)

Vậy Min Q=3. Dấu "=" xảy ra khi và chỉ khi x=y=z=1

27 tháng 3 2020

bằng 3 

Giờ bạn cần bài này nữa không 

1.   Đặt A = x2+y2+z2

             B = xy+yz+xz

             C = 1/x + 1/y + 1/z

Lại có (x+y+z)2=9

             A + 2B = 9

  Dễ chứng minh A>=B 

      Ta thấy 3A>=A+2B=9 nên A>=3 (khi và chỉ khi x=y=z=1)

Vì x+y+z=3 => (x+y+z) /3 =1 

    C = (x+y+z) /3x  +  (x+y+x) /3y + (x+y+z)/3z

C = 1/3[3+(x/y+y/x) +(y/z+z/y) +(x/z+z/x) 

Áp dụng bất đẳng thức (a/b+b/a) >=2

=> C >=3 ( khi và chỉ khi x=y=z=1)

P =2A+C >= 2.3+3=9 ( khi và chỉ khi x=y=x=1

Vậy ...........

Câu 2 chưa ra thông cảm