K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2017

\(P=\frac{3+a^2}{b+c}+\frac{3+b^2}{a+c}+\frac{3+c^2}{a+b}\ge6\)

\(=\frac{3}{b+c}+\frac{a^2}{b+c}+\frac{3}{a+c}+\frac{b^2}{a+c}+\frac{3}{a+b}+\frac{c^2}{a+b}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có: 

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{3}{2}\)

Lại có: \(\frac{3}{b+c}+\frac{3}{a+c}+\frac{3}{a+b}=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\)

\(=\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\)

\(=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\). Lại theo BĐT Nesbitt ta có: 

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\forall\)a,b,c dương 

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\ge\frac{3}{2}+3=\frac{9}{2}\)

\(\Rightarrow P=Σ\frac{3}{b+c}+Σ\frac{a^2}{b+c}\ge\frac{3}{2}+\frac{9}{2}=6\)

Đẳng thức xảy ra khi \(a=b=c=1\)

21 tháng 4 2017

hình như >=6 mới đúng giờ mạng đang nghèn mai giải cho

25 tháng 7 2020

ta có \(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ca+4a^2}=\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\cdot b+\frac{11-\left(\frac{b}{c}\right)^3}{\frac{b}{c}+4}\cdot c+\frac{11-\left(\frac{c}{a}\right)^3}{\frac{c}{a}+4}\cdot a\)

khi a=b=c=1 ta thấy đẳng thức xảy ra

xét \(f\left(x\right)=\frac{11-x^3}{x+4}\)ta có \(\frac{11-x^3}{x+4}\le-x+3\Leftrightarrow\left(x-1\right)^2\left(x+1\right)\ge0\forall x>0\)

thay x bởi a/b ta được \(\frac{11-\left(\frac{a}{b}\right)^3}{\frac{a}{b}+4}\le-\frac{a}{b}+3\Leftrightarrow\frac{11b^3-a^3}{ab+4b^2}\le-a+3b\)

tương tự \(\hept{\begin{cases}\frac{11c^3-b^3}{bc+4c^2}\le-b+3c\\\frac{11ba^3-c^3}{ac+4a^2}\le-c+3a\end{cases}}\)

cộng các bđt cùng chiều ta được

\(\frac{11b^3-a^3}{ab+4b^2}+\frac{11c^3-b^3}{bc+4c^2}+\frac{11a^3-c^3}{ac+4a^2}\le2\left(a+b+c\right)=6\)

25 tháng 7 2020

\(\frac{11b^3-a^3}{ab+4b^2}\le3b-a\)

20 tháng 8 2017

1.

\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Leftrightarrow a^2\le}2+a\)

Tương tự \(b^2\le2+b,c^2\le2+c\Rightarrow a^2+b^2+c^2\le6+a+b+c=6\)

Dấu "=" xảy ra khi a=2,b=c=-1 và các hoán vị của chúng

20 tháng 8 2017

Xét \(\frac{a^2+1}{a}=a+\frac{1}{a}\)

Dễ thấy dấu "=" xảy ra khi  \(a=\frac{1}{3}\)

khi đó \(a+\frac{1}{a}=a+\frac{1}{9a}+\frac{8}{9a}\ge2\sqrt{\frac{a.1}{9a}}+\frac{8}{\frac{9.1}{3}}=\frac{10}{3}\)

\(\Rightarrow\frac{a}{a^2+1}\le\frac{3}{10}\)

tương tự =>đpcm

24 tháng 10 2020

a) Bổ đề: \(x^3+y^3\ge xy\left(x+y\right)\forall x,y>0\)

\(\frac{a^3+b^3}{ab}+\frac{b^3+c^3}{bc}+\frac{c^3+a^3}{ca}\ge\frac{ab\left(a+b\right)}{ab}+\frac{bc\left(b+c\right)}{bc}+\frac{ca\left(c+a\right)}{ca}=2\left(a+b+c\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

24 tháng 10 2020

Cảm ơn bạn nhiều nhé Nhật Pháp soi chiếu thế gian. Nếu có thể, mong bạn hãy giúp mình những phần còn lại ^^

8 tháng 3 2020

Bài 1 :

Áp dụng BĐT Cô - si cho 3 số không âm

\(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{a^3}{b^3}}+1\ge3\sqrt[3]{\sqrt{\frac{a^6}{b^6}}}=\frac{3a}{b}\)

\(\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{b^3}{c^3}}+1\ge3\sqrt[3]{\sqrt{\frac{b^6}{c^6}}}=\frac{3b}{c}\)

\(\sqrt{\frac{c^3}{a^3}}+\sqrt{\frac{c^3}{a^3}}+1\ge3\sqrt[3]{\sqrt{\frac{c^6}{a^6}}}=\frac{3c}{a}\)

Cộng theo vế , ta được :

\(2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)+3\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

\(\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)+3\)

\(\Rightarrow2\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

\(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\)

Vậy \(\Rightarrow\left(\sqrt{\frac{a^3}{b^3}}+\sqrt{\frac{b^3}{c^3}}+\sqrt{\frac{c^3}{a^3}}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(đpcm\right)\)

6 tháng 10 2020

Mình xem phép làm câu 1 ạ. 

Đề là?

\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\)(1)

Chứng minh tương đương 

\(\frac{a+b}{2a-b}+\frac{c+b}{2c-b}\ge4\)<=> 12ac - 9bc  - 9ab + 6b2 \(\le\)0 ( quy đồng )  (2)

Từ (1) <=> 2ac = ab + bc  Thay vào (2) <=> 6ab + 6bc - 9bc  - 9ab + 6b2  \(\le\)

<=> a + c \(\ge\)2b 

Từ (1) => \(\frac{2}{b}=\frac{1}{a}+\frac{1}{c}\ge\frac{4}{a+c}\)

=> a + c \(\ge\)2b đúng => BĐT ban đầu đúng

Dấu "=" xảy ra <=> a = c = b