K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

a) Áp dụng bđt AM-GM cho 2 số không âm ta có: \(\sqrt{a+1}=\sqrt{1.\left(a+1\right)}\le\frac{1+a+1}{2}=\frac{a}{2}+1\)

Tương tự: \(\sqrt{b+1}\le\frac{b}{2}+1\)

\(\sqrt{c+1}\le\frac{c}{2}+1\)

Cộng vế với vế ta được: \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\frac{a+b+c}{2}+3=3,5\)

Dấu "='' xảy ra khi a + 1 = b + 1 = c + 1 = 1

<=> a = b = c = 0, mâu thuẫn với đề: a + b + c = 1

Do đó \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\left(đpcm\right)\)

26 tháng 2 2017

b) Áp dụng bđt Cauchy-Schwarz cho bộ 3 số dương ta có:

\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1+1+1\right)\)\(\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right]\)

\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le3.2.\left(a+b+c\right)=6.1=6\)

\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\left(đpcm\right)\)

19 tháng 1 2023

\(ab+bc+ca\le1\)

\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)

\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)

\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)

7 tháng 9 2019

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

7 tháng 9 2019

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

29 tháng 1 2019

Easy!

\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)

\(=\sqrt{\frac{3}{2}}\left[\sqrt{\left(a+b\right).\frac{2}{3}}+\sqrt{\left(b+c\right).\frac{2}{3}}+\sqrt{\left(c+a\right).\frac{2}{3}}\right]\) (*)

Áp dụng BĐT Cô si ngược,ta có: 

(*) \(\le\sqrt{\frac{3}{2}}\left[\frac{a+b+\frac{2}{3}}{2}+\frac{b+c+\frac{2}{3}}{2}+\frac{c+a+\frac{2}{3}}{2}\right]\)

\(=\sqrt{\frac{3}{2}}\left(a+b+c+1\right)=\sqrt{\frac{3}{2}}.2=\sqrt{6}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a+b=b+c=c+a=\frac{2}{3}\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)