K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

SD bất đẳng thức Côsi:

\(\frac{a^3}{\left(b+2c\right)^2}+\frac{b+2c}{27}+\frac{b+2c}{27}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)^2}.\frac{b+2c}{27}.\frac{b+2c}{27}}=\frac{a}{3}\)

Tương tự rồi cộng lại ta có đpcm

20 tháng 11 2019

bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge\frac{9}{4}\)

Có: \(\frac{a^2+ab+ca}{\left(b+c\right)^2}=\frac{a^2+ab+bc+ca}{\left(b+c\right)^2}-\frac{bc}{\left(b+c\right)^2}\ge\frac{\left(a+b\right)\left(c+a\right)}{\left(b+c\right)^2}-\frac{1}{4}\)

=> \(\Sigma_{cyc}\frac{a^2+ab+ca}{\left(b+c\right)^2}\ge3\sqrt[3]{\frac{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}-\frac{3}{4}=\frac{9}{4}\)

20 tháng 11 2019

bđt\(\Leftrightarrow\left[\Sigma_{cyc}\frac{a}{\left(b+c\right)^2}\right]\left(a+b+c\right)\ge\frac{9}{4}\)

Ta co:

\(VT\ge\left(\Sigma_{cyc}\frac{a}{b+c}\right)^2\ge\frac{9}{4}\)(theo bunhiacopxki va nesbit)

Dau '=' xay ra khi \(a=b=c\)

17 tháng 8 2023

\(a,A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\\ =2.2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\sqrt{3^2}-1}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\\ =-\dfrac{2\left(\sqrt{3}-1\right)}{2}+\left|\sqrt{3}+1\right|\\ =-\sqrt{3}+1+\sqrt{3}+1\\ =2\)

\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\left(dk:x\ge0,x\ne1\right)\\ =\left(1+\dfrac{\sqrt{x}\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\right)\left(1-\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\\ =\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\\ =1-x\)

\(b,A=4\sqrt{B}\Leftrightarrow4\sqrt{1-x}=2\\ \Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\\ \Leftrightarrow\left|1-x\right|=\dfrac{1}{4}\)

\(\Leftrightarrow1-x=\dfrac{1}{4}\\ \Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)

Vậy \(x=\dfrac{3}{4}\) thì \(A=4\sqrt{B}\).

17 tháng 8 2023

a) \(A=2\sqrt{20}-\dfrac{2}{\sqrt{3}+1}-\sqrt{80}+\sqrt{4+2\sqrt{3}}\)

\(A=2\cdot2\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}-4\sqrt{5}+\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2}\)

\(A=4\sqrt{5}-\dfrac{2\left(\sqrt{3}-1\right)}{2}-4\sqrt{5}+\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(A=-\left(\sqrt{3}-1\right)+\sqrt{3}+1\)

\(A=-\sqrt{3}+1+\sqrt{3}+1\)

\(A=2\)

\(B=\left(1+\dfrac{x+\sqrt{x}}{1+\sqrt{x}}\right)\left(1+\dfrac{x-\sqrt{x}}{1-\sqrt{x}}\right)\)

\(B=\left[1+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right]\left[1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right]\)

\(B=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\)

\(B=1^2-\left(\sqrt{x}\right)^2\)

\(B=1-x\)

b) Ta có: \(A=4\sqrt{B}\)

\(\Rightarrow2=4\sqrt{1-x}\)

\(\Leftrightarrow\sqrt{1-x}=\dfrac{1}{2}\)

\(\Leftrightarrow1-x=\dfrac{1}{4}\)

\(\Leftrightarrow x=1-\dfrac{1}{4}\)

\(\Leftrightarrow x=\dfrac{3}{4}\left(tm\right)\)

đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)

\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)

\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)

\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)

21 tháng 8 2020

Chú ý đến giả thiết a + b + c = 1 ta viết được \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}=\frac{ab}{\sqrt{\left(a+b\right)^2\left(1-c\right)\left(1+c\right)}}=\)\(\frac{ab}{\left(a+b\right)\sqrt{1-c^2}}=\frac{ab}{\left(a+b\right)\sqrt{\left(a+b+c\right)^2-c^2}}\)\(=\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\)

Mặt khác áp dụng bất đẳng thức Cauchy ta được \(a^2+b^2+2\left(ab+bc+ca\right)\ge2ab+2\left(ab+bc+ca\right)=\)\(2\left(ab+bc\right)+2\left(ab+ca\right)\)và \(a+b\ge2\sqrt{ab}\)

Từ đó dẫn đến \(\frac{ab}{\left(a+b\right)\sqrt{a^2+b^2+2\left(ab+bc+ca\right)}}\le\frac{ab}{2\sqrt{ab}\sqrt{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)\(=\frac{1}{2}\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\)

Mà theo bất đẳng thức quen thuộc \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\) ta có: \(\sqrt{\frac{ab}{2\left(ab+bc\right)+2\left(ab+ca\right)}}\le\sqrt{\frac{1}{4}\left(\frac{ab}{2\left(ab+bc\right)}+\frac{ab}{2\left(ab+ca\right)}\right)}\)

\(=\frac{1}{2\sqrt{2}}\sqrt{\frac{ab}{ab+bc}+\frac{ab}{ab+ca}}=\frac{1}{2\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)

Từ đó ta có bất đẳng thức: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}\)(1)

Hoàn toàn tương tự, ta có: \(\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+a\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}\)(2) ; \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\le\frac{1}{4\sqrt{2}}\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)(3)

Cộng theo vế 3 bất đẳng thức (1), (2), (3), ta được: \(\frac{ab}{\sqrt{\left(1-c\right)^3\left(1+c\right)}}+\frac{bc}{\sqrt{\left(1-a\right)^3\left(1+c\right)}}+\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)\(\le\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\)

Ta cần chứng minh\(\frac{1}{4\sqrt{2}}\left(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\right)\le\frac{3\sqrt{2}}{8}\)

Hay \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\le3\)

Áp dụng bất đẳng thức Bunhiacopxki ta được \(\sqrt{\frac{a}{a+c}+\frac{b}{b+c}}+\sqrt{\frac{b}{b+a}+\frac{c}{c+a}}+\sqrt{\frac{c}{c+b}+\frac{a}{a+b}}\)

\(\le\sqrt{3\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}+\frac{a}{a+b}\right)}=3\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

21 tháng 8 2020

Sửa đề: \(\frac{ca}{\sqrt{\left(1-b\right)^3\left(1+b\right)}}\)

14 tháng 3 2017

123/456

15 tháng 3 2017

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(ac+bd\le\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}\)

Mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)

\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}+c^2+d^2\)

\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)

Còn cách bình phương nó lên nữa nhưng dễ lẫn nên nếu chưa học Caushy-Schwarz thì nhắn nhé - NOTE: đây còn là BĐT Mincopski tìm cách c/m nó trên google cũng đầy

2 tháng 6 2021

\(M=3\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}+4\right)^2+14\)

\(=3\left(x+2\sqrt{x}+1\right)-\left(x+8\sqrt{x}+16\right)+14\)

\(=3x+6\sqrt{x}+3-x-8\sqrt{x}-16+14\)

\(=2x-2\sqrt{x}+1\)

\(=2\left(x-4\sqrt{x}+4\right)+6\sqrt{x}-7\)

\(=2\left(\sqrt{x}-2\right)^2+6\sqrt{x}-7\ge2.0+6.\sqrt{4}-7=5\)

Dấu "=" \(x=4\)

Vậy GTNN của M là 4 <=> x = 4

4 tháng 6 2021

\(\left\{{}\begin{matrix}xz=x+4\left(1\right)\\2y^2=7xz-3x-14\\x^2+y^2=35-z^2\left(3\right)\end{matrix}\right.\left(2\right)\)

Nhận thấy \(x=0\) không là nghiệm của (1) . 

\(\rightarrow z=\dfrac{x+4}{x}\)(4)

Thế (1) vào (2) . 

\(2y^2=7\left(x+4\right)-3x-14=4x+14\leftrightarrow y^2=2x+7\)(\(x\ge-\dfrac{7}{2}\)) (5)

Thế (4)(5) vào (3) 

\(x^2+2x+7=35-\left(\dfrac{x+4}{x}\right)^2\)

\(\Leftrightarrow x^4+2x^3-27x^2+8x+16=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x^2+7x+4\right)=0\)\(\)

TH1 : \(x-4=0\Leftrightarrow x=4\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt{15}\\z=2\end{matrix}\right.\)

TH2 : \(x-1=0\Leftrightarrow x=1\Leftrightarrow\left\{{}\begin{matrix}y=\pm3\\z=5\end{matrix}\right.\)

TH3 : \(x^2+7x+4=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7+\sqrt{33}}{2}\left(TM\right)\\x=\dfrac{-7-\sqrt{33}}{2}\left(KTM\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\dfrac{-7+\sqrt{33}}{2}\Leftrightarrow\left\{{}\begin{matrix}y=\pm\sqrt[4]{33}\\z=-\dfrac{5+\sqrt{33}}{2}\end{matrix}\right.\)