K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Ta có \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{abc}\)

Theo đề bài ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}\)

\(\ge\frac{3\sqrt[3]{a^2b^2c^2}}{abc}=\frac{3}{\sqrt[3]{abc}}\ge9\)

28 tháng 7 2016

Keke

\(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\ge\frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)  \(\left(i\right)\)

Đặt  \(x=\frac{1}{a};\)  \(y=\frac{2}{b};\)  và  \(z=\frac{3}{c}\)  \(\Rightarrow\) \(\hept{\begin{cases}a=\frac{1}{x}\\b=\frac{2}{b}\\c=\frac{3}{z}\end{cases}}\)  nên   \(x,y,z>0\)

Khi đó, ta có thể biểu diễn lại bđt  \(\left(i\right)\) dưới dạng ba biến  \(x,y,z\)  như sau:

\(x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3xz}{2z+x}\) \(\left(ii\right)\)

Lúc này, ta cần phải chứng minh bđt  \(\left(ii\right)\)  luôn đúng với mọi  \(x,y,z>0\)

Thật vậy, ta có:

\(2x+y=x+x+y\ge3\sqrt[3]{x^2y}\)

\(\Rightarrow\) \(\frac{3xy}{2x+y}\le\frac{3xy}{3\left(x^2y\right)^{\frac{1}{3}}}=\left(xy^2\right)^{\frac{1}{3}}\le\frac{x+2y}{3}\)  \(\left(1\right)\)

Thiết lập các bđt còn lại theo vòng hoán vị  \(y\rightarrow z\rightarrow x\) , ta có:

\(\frac{3yz}{2y+z}\le\frac{y+2z}{3}\) \(\left(2\right);\)  \(\frac{3xz}{2z+x}\le\frac{z+2x}{3}\) \(\left(3\right)\)

Cộng từng vế ba bđt   \(\left(1\right);\)  \(\left(2\right);\)  và   \(\left(3\right)\) ta được:

\(VP\left(ii\right)\le\frac{x+2y+y+2z+z+2x}{3}=\frac{3\left(x+y+z\right)}{3}=x+y+z=VT\left(ii\right)\)

Vậy, bđt  \(\left(ii\right)\)  được chứng minh.

nên kéo theo  bđt  \(\left(i\right)\)  luôn là bđt đúng với  mọi  \(a,b,c>0\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(x=y=z\) \(\Leftrightarrow\)  \(6a=3b=2c\)

bạn làm giống mình đó

27 tháng 6 2015

Ta có: \(\frac{a}{1+b^2}=\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=a-\frac{ab}{1+b^2}\)

\(1+b^2\ge2b\) \(\Rightarrow\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\)\(\Rightarrow-\frac{ab^2}{1+b^2}\ge-\frac{ab}{2}\)

Do đó: \(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\)

Tương tự: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);  \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Suy ra \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\)

Mặt khác ta có: \(3\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow\frac{3}{a+b+c}\le1\)

\(\Rightarrow a+b+c\ge3\)

Do đó; \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}+\frac{ab+bc+ca}{2}\ge a+b+c\ge3\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1\)

 

25 tháng 1 2017

1/a+1/b+1/c >= 9

<=>(1/a+1/b+1/c)(a+b+c) >= 9(a+b+c)=9 (do a+b+c=1)

<=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) 

áp dụng bđt côsi cho các số dương a/b,b/a,b/c,c/b,c/a,a/c 

a/b+b/a >= 2.căn a/b . b/a =2 

Tương tự b/c+c/b >= 2,c/a+a/c >= 2

=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) >= 3+2+2+2=9 

=>đpcm

23 tháng 7 2016

Không khó nha,!

22 tháng 7 2016

\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)

12 tháng 7 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Biến đổi vế 2 :

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )

\(=\frac{bc+ac+ab}{abc}\)

Ta có :

\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)

\(=\frac{abc+abc+abc}{abc}\)\(=3\)

→ ( a + b + c ) = 3

Ta có : 3 . 3 = 9 => ĐPCM

28 tháng 3 2018

Áp dụng BĐT Cauchy-Schwarz dưới dạng phân số ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)

<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (vì a+b+c=1) (đpcm)

28 tháng 3 2018

Cách khác dùng AM-GM

Áp dụng bđt AM-GM cho 3 số không âm ta được:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)

Tiếp tục áp dụng bđt AM-GM cho 3 số không âm ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\dfrac{3}{\sqrt[3]{abc}}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)(đpcm)

22 tháng 1 2018

Với x,y,z > 0

Xét : (1/x + 1/y + 1/z).(x+y+z)

>=3 \(\sqrt[3]{\frac{1}{xyz}}\). 3\(\sqrt[3]{xyz}\) = 9

=> 1/x + 1/y + 1/z >= 9/x+y+z = 9/1 = 9

=> ĐPCM

Dấu "=" xảy ra <=> x=y=z=1/3

Tk mk nha

23 tháng 1 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)(đúng với a, b, c dương) 

Áp dụng BĐT trên ta có: 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)

22 tháng 1 2017

Theo bất đẳng thức Cô-sy ta được:

\(a+b+c\ge3^3\sqrt{abc}\)(1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^3\sqrt{\frac{1}{abc}}\)(2)

Nhân (1) (2) vế heo vế ta được

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)

30 tháng 3 2018

biến đổi cách này dễ hiểu hơn nề:))

vì a+b+c=1 nên

\(\frac{1}{a}\)=\(\frac{a+b+c}{a}\)= 1+ \(\frac{b}{a}\)+\(\frac{c}{a}\)

\(\frac{1}{b}\)=\(\frac{a+b+c}{b}\)= 1+ \(\frac{a}{b}\)+\(\frac{c}{b}\)

\(\frac{1}{c}\)=\(\frac{a+b+c}{c}\)= 1+ \(\frac{a}{c}\)+\(\frac{b}{c}\)

ta có \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)= 1+1+1+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{a}{c}\)+\(\frac{c}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))

ta lại có \(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\)\(\Leftrightarrow\)\(\frac{a^2+b^2}{ab}\)\(\ge\)2\(\Leftrightarrow\)\(a^2\)+\(b^2\)\(\ge\)2ab \(\Leftrightarrow\)(a-b)^2\(\ge\)0      luôn đúng

tương tự ta có a/c+c/a >= 2 và b/c+c/b >= 2

vậy 1/a+1/b+1/c>=9