K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

Từ giả thiết => \(\frac{y}{y+1}+\frac{z}{z+1}+\frac{t}{t+1}\le1-\frac{x}{x+1}=\frac{1}{x+1}\)

Áp dụng bất đẳng thức Cô-si cho ba số dương ta có

   \(\frac{1}{x+1}\ge\frac{y}{y+1}+\frac{z}{z+1}+\frac{t}{t+1}\ge3\sqrt[3]{\frac{yzt}{\left(y+1\right)\left(z+1\right)\left(t+1\right)}}\)

Tương tự     \(\frac{1}{y+1}\ge3\sqrt[3]{\frac{xzt}{\left(x+1\right)\left(z+1\right)\left(t+1\right)}}\)

                   \(\frac{1}{z+1}\ge3\sqrt[3]{\frac{xyt}{\left(x+1\right)\left(y+1\right)\left(t+1\right)}}\)

                   \(\frac{1}{t+1}\ge3\sqrt[3]{\frac{xyz}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)

Nhân từng vế bốn bất đẳng thức, ta được \(81xyzt\le1\)

31 tháng 7 2020

vì 0<x,y,z\(\le\)1 nên (1-x)(1-y) >=0 <=> 1+xy >= x+y

<=> 1+z+xy >= x+y+z

<=> \(\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\left(1\right)\)

tương tự có \(\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\left(2\right);\frac{z}{1+x+xy}\le\frac{z}{x+y+z}\left(3\right)\)

cộng theo vế của (1), (2), (3) ta được

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x+y+z}\le\frac{3}{x+y+z}\)

dấu "=" xảy ra khi x=y=z=1

30 tháng 7 2020

\(\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\text{Σ}\frac{x}{x^2+xy+zx}=\text{Σ}\frac{x}{x\left(x+y+z\right)}=\frac{3}{x+y+z}\)

Do \(1\ge x^2\)và \(y\ge xy\)

Dấu = xảy ra khi x = y = z = 1

21 tháng 10 2019

Nhân cả 2 vế với xyz bất đẳng thức sẽ thành yz+ xz+xy+yz\(\sqrt{1+x^2}\)+xz\(\sqrt{1+y^2}+xy\sqrt{1+z^2}\le x^2y^2z^2\)

Ta có yz\(\sqrt{1+x^2}=\sqrt{yz}.\sqrt{yz+x^2yz}=\sqrt{yz}.\sqrt{yz+x\left(x+y+z\right)}=\)\(\sqrt{yz}.\sqrt{\left(x+y\right)\left(x+z\right)}\)\(\le\)\(yz+\frac{\left(x+y\right)\left(x+z\right)}{4}\)(2ab\(\le a^2+b^2\))

làm tương tự ta được xz\(\sqrt{1+x^2}\le xz+\frac{\left(x+y\right)\left(y+z\right)}{4};xy\sqrt{1+z^2}\le xy+\frac{\left(y+z\right)\left(z+x\right)}{4}.\)

vế trái \(\le\) 2(xy+yz+zx) + \(\frac{\left(x+y\right)\left(x+z\right)+\left(y+x\right)\left(y+z\right)+\left(z+x\right)\left(z+y\right)}{4}\)\(\le2.\frac{1}{3}.\left(x+y+z\right)^2+\frac{\frac{1}{3}\left(x+y+y+z+z+x\right)^2}{4}=\left(x+y+z\right)^2=x^2y^2z^2.\)

[ (a-b)2 +(b-c)2 +(c-a)2 \(\ge0\)<=>\(ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\) áp dụng vào trên)

dấu '=' xảy ra khi x=y=z \(\sqrt{3}\)

16 tháng 9 2018

Với 2 số dương bất kì: ( 1 )

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)Vì x và y dương nên \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\forall x;y\)

Áp dụng ( 1 ): \(\frac{4}{2x+y+z}=\frac{4}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{x+y}+\frac{1}{x+z}\)

Mà: \(\frac{1}{x+y}+\frac{1}{x+z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{4}\)\(=\frac{1}{4}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Nên: \(\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự ta có: \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)

Và \(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Cộng vế với vế các bất đẳng thức kết hợp với điều kiện \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=4\) nên ta có đpcm

9 tháng 6 2017

Vì \(0\le x,y,z\le1\)

\(\Rightarrow xy\le y\)

\(x^2\le1\)

\(\Rightarrow x^2+xy+xz\le xz+y+1\)

\(\Leftrightarrow x\left(x+y+z\right)\le1+y+xz\)

\(\Leftrightarrow\)\(\frac{x}{1+y+xz}\le\frac{1}{x+y+z}\)

CMTT : các vế khác cug vậy

cộng các vế vào là đc

20 tháng 1 2018

\(0\le x;y;z\le1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow xy-x-y+1\ge0\)

\(\Rightarrow xy+1\ge x+y\)

Tương tự ta chứng minh được \(xz+1\ge x+z\)và \(yz+1\ge y+z\)

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{1}{x+y+z}\)(\(x\le1\))

\(\Rightarrow\frac{y}{1+z+xy}\le\frac{y}{x+y+z}\le\frac{1}{x+y+z}\)(\(y\le1\))

\(\Rightarrow\frac{z}{1+x+yz}\le\frac{z}{x+y+z}\le\frac{1}{x+y+z}\)\(z\le1\))

\(\Rightarrow\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)(đpcm)

15 tháng 5 2018

Do \(0\le x,y,z\le1\)\(\Rightarrow x\ge x^2;y\ge y^2;z\ge z^2\)

\(\Rightarrow\left(x-1\right)\left(z-1\right)\ge0\Rightarrow xz-x-z+1\ge0\Rightarrow xz+y+1\ge x+y+z\ge x^2+y^2+z^2\) 

\(\Rightarrow\frac{x}{1+y+xz}\le\frac{x}{x+y+z}\le\frac{x}{x^2+y^2+z^2}\) 

Tương tự rồi cộng từng vế, ta có:  

\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{3}{x+y+z}\) 

=> ĐPCM 

27 tháng 3 2017

Ta chứng minh

\(a+b\ge\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)

\(\Leftrightarrow\left(\sqrt[3]{a}-\sqrt[3]{b}\right)^2\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\ge0\)(đúng )

Áp đụng vào bài toán ta được

\(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)

\(\le\frac{1}{\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)+1}+\frac{1}{\sqrt[3]{yz}\left(\sqrt[3]{y}+\sqrt[3]{z}\right)+1}+\frac{1}{\sqrt[3]{zx}\left(\sqrt[3]{z}+\sqrt[3]{x}\right)+1}\)
\(=\frac{\sqrt[3]{z}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{x}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}+\frac{\sqrt[3]{y}}{\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}}=1\)

27 tháng 3 2017

đặt x=a/b , y=b/c , z=c/a 

15 tháng 6 2017

a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)

\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)

\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)

b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)

Áp dụng câu a ta được

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)

15 tháng 6 2017

khó quá

12 tháng 9 2020

\(VP=\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}=\left(\frac{x}{y+z+t}+\frac{y+z+t}{9x}\right)+\left(\frac{y}{z+t+x}+\frac{z+t+x}{9y}\right)+\left(\frac{z}{t+x+y}+\frac{t+x+y}{9z}\right)+\left(\frac{t}{x+y+z}+\frac{x+y+z}{9t}\right)+\frac{8}{9}\left(\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\right)\)\(\ge8\sqrt[8]{\frac{x}{y+z+t}.\frac{y}{z+t+x}.\frac{z}{t+x+y}.\frac{t}{x+y+z}.\frac{y+z+t}{9x}.\frac{z+t+x}{9y}.\frac{t+x+y}{9z}.\frac{x+y+z}{9t}}+\frac{8}{9}\left(\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{z}{y}+\frac{t}{y}+\frac{x}{y}+\frac{t}{z}+\frac{x}{z}+\frac{y}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}\right)\)\(\ge\frac{8}{3}+\frac{8}{9}.12\sqrt[12]{\frac{y}{x}.\frac{z}{x}.\frac{t}{x}.\frac{z}{y}.\frac{t}{y}.\frac{x}{y}.\frac{t}{z}.\frac{x}{z}.\frac{y}{z}.\frac{x}{t}.\frac{y}{t}.\frac{z}{t}}=\frac{8}{3}+\frac{8}{9}.12=\frac{40}{3}=VT\left(đpcm\right)\)

Đẳng thức xảy ra khi x = y = z = t > 0