K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

Giả sử \(1\le x\le y\le z\) Khi đó 

phương trình đã cho \(\Leftrightarrow xyz=x+y+z\le3z\Rightarrow x.y\le3\) Vì x,y,z thuộc Z+ \(\Rightarrow x.y\in\left\{1;2;3\right\}\)

Nếu \(xy=1\Rightarrow x=y=1\Rightarrow2+z=z\left(S\right)\)

Nếu \(xy=2\Rightarrow x=1;y=2;z=3\)

Nếu \(x.y=3\Rightarrow x=1;y=3\Rightarrow z=2\) <y (vô lí)

Vậy x;y;z là hoán vị của 1;2;3

18 tháng 4 2016

bạn giải kiểu đó lớp mấy đấy

31 tháng 3 2017

\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

\(M=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)

\(M=\frac{1^2}{16x}+\frac{2^2}{16y}+\frac{4^2}{16z}\)

\(M\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}\)

    \(=\frac{49}{16}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}=\frac{1+2+4}{16\left(x+y+z\right)}=\frac{7}{16}\) 

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

31 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow x+y+z\ge3\sqrt[3]{xyz}\)

\(\Rightarrow1\ge3\sqrt[3]{xyz}\)

\(\Rightarrow\frac{1}{27}\ge xyz\)

Ta có  \(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)

Áp dụng bất đẳng thức Cauchy - Schwarz 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\)( 1 ) 

Xét  \(3\sqrt[3]{\frac{1}{64xyz}}\)

Ta có  \(\frac{1}{27}\ge xyz\)

\(\Rightarrow\frac{64}{27}\ge64xyz\)

\(\Rightarrow\frac{27}{64}\le\frac{1}{64xyz}\)

\(\Rightarrow\frac{9}{4}\le3\sqrt[3]{\frac{1}{64xyz}}\)( 2 ) 

Từ ( 1 ) và ( 2 ) 

\(\Rightarrow M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{64xyz}}\ge\frac{9}{4}\)

Vậy  \(M_{min}=\frac{9}{4}\)

13 tháng 2 2016

Câu 1: 

x + 5/4 = 0 => x = -5/4

x - 19/7 = 0 => x = 19/7

Lập bảng: 

P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?

x                  -5/4                                      19/7                 
x + 5/4          -         0                    +                    /           + 
x - 19/7          -         /                     -                    0           +
( x + 5/4 ) ( x - 19/7 )          +         0                   -                    0           +

Suy ra   -5/4 <   x   <   19/7

Hay     -1,25 <   x   <  2,(714285)

Mặt khác x thuộc Z nên x = -1, 0, 1, 2

Câu 2:

            2xy + 4y   = 6

           2 (xy + 2y) = 6

          => xy + 2y = 6 / 2 = 3

         => xy + 2y = 3

        => y (x + 2) = 3

Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)

Mik khỏi lập bảng!

Từ bảng trên ta có y = {-3; -1; 1; 3}

Câu 3:

     x + y = 8, x + z = 10, y + z  = 12

=> (x + y) + (x + z)    +  (y + z) =  8 + 10 + 12 = 30

=> 2(x + y + z) = 30

=> x + y + z = 15

Đến đây thì dễ rồi! ^^

Câu 4:

(x + 3) = +5 Hoặc -5

Nhưng đề hỏi là x^3 > 0 = .....

Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0

Ta có x + 3 = 5

Từ đó có x = 8

Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....

 * ♥ * Xong! * ♫ *

 * ♥ * nha! * ♫ *

 

 

13 tháng 2 2016

C1: Lập bảng xét dấu tích:

x + 5/4 = 0 => x = -5/4

x - 19/7 = 0 => x = 19/7

Ta có:

x                  -5/4                                      19/7                 
x + 5/4          -         0                    +                    /           + 
x - 19/7          -         /                     -                    0           +
( x + 5/4 ) ( x - 19/7 )          +         0                   -                    0           +

Vậy -5/4 < x < 19/7

14 tháng 3 2016

Áp dụng bất đẳng thức cho ba số  \(x,y,z\in Z^+\), ta được
\(x^2+y^2\ge2xy\)  \(\Rightarrow\)  \(\frac{x+y}{x^2+y^2}\le\frac{x+y}{2xy}\)  \(\left(1\right)\)

\(y^2+z^2\ge2yz\)   \(\Rightarrow\)  \(\frac{y+z}{y^2+z^2}\le\frac{y+z}{2yz}\)  \(\left(2\right)\)

\(z^2+x^2\ge2xz\)  \(\Rightarrow\)  \(\frac{z+x}{z^2+x^2}\le\frac{z+x}{2xz}\)  \(\left(3\right)\)

Cộng từng vế của  \(\left(1\right);\)  \(\left(2\right)\)  và  \(\left(3\right)\)  ta được  \(\frac{x+y}{x^2+y^2}+\frac{y+z}{y^2+z^2}+\frac{z+x}{z^2+x^2}\le\frac{x+y}{2xy}+\frac{y+z}{2yz}+\frac{z+x}{2xz}=\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}+\frac{1}{2y}+\frac{1}{2x}+\frac{1}{2z}\)

\(\Leftrightarrow\)  \(P\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2015\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(x=y=z=\frac{3}{2015}\)

Vậy,  \(P_{max}=2015\)  \(\Leftrightarrow\)   \(x=y=z=\frac{3}{2015}\)