K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2020

a , sai đề thì phải @@

b, \(\frac{a^2+b^2}{2}\ge ab< =>a^2+b^2\ge2ab< =>\left(a-b\right)^2\ge0\)*đúng*

c, \(\left(a+1\right)^2>a\left(a+2\right)< =>a^2+2a+1>a^2+2a< =>1>0\)*đúng*

d, Áp dụng BĐT Cauchy cho 2 số :

\(m^2+1\ge2m\)

\(n^2+1\ge2n\)

Cộng theo vế ta có điều phải chứng minh 

28 tháng 7 2020

e, Áp dụng BĐT Cauchy cho 2 số không âm ta có :

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)

Nhân theo vế các BĐT cùng chiều ta được :

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4\)

Dấu "=" xảy ra khi và chỉ khi \(a=b\)

Vậy ta có điều phải chứng minh

27 tháng 4 2017

e)\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(=1+\frac{b}{a}+\frac{a}{b}+1\)

\(=\left(1+1\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)

\(=2+\left(\frac{a.a}{b.a}+\frac{b.b}{a.b}\right)\)

\(=2+\frac{a.a+b.b}{b.a}\)

\(\frac{a.a+b.b}{a.b}>=2\) 

Nên \(2+\frac{a.a+b.b}{a.b}>=2+2=4\)

Hay \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)>=4\)

27 tháng 4 2017

a) \(a^2+b^2-2ab\)

\(=\left(a-b\right)^2\)

\(\left(a-b\right)^2\) là binh phương của một số nên \(\left(a-b\right)^2>=0\)

Hay \(a^2+b^2-2ab>=0\)

2 tháng 5 2017

a) Ta có: \(\left(a-b\right)^2\ge0\)

=>\(a^2+b^2-2ab\ge0\left(đpcm\right)\)

b) \(\left(a+b\right)^2\ge0\)

=> \(a^2+b^2+2ab\ge0\)

<=> \(a^2+b^2\ge-2ab\)

<=> \(\dfrac{a^2+b^2}{2}\ge ab\) (đpcm)

c) ta có: \(\left(a+1\right)^2=a^2+2a+1\)

\(a\left(a+2\right)=a^2+2a\)

Vậy từ 2 điều trên => \(a\left(a+2\right)< \left(a+1\right)^2\)

d) \(m^2+n^2+2\ge2\left(m+n\right)\) (*)

<=>m2 - 2m +1 +n2 - 2n +1 \(\ge0\)

<=> \(\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (1)

(1) đúng => (*) đúng

d) Bạn ấy giải rồi ,mình không giải nữa

2 tháng 5 2017

e) Theo BĐT cauchy ta có: \(\dfrac{a^2+b^2}{2}\ge ab\Rightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\left(\dfrac{a}{b}+1\right)+\left(\dfrac{b}{a}+1\right)\ge4\)

\(\Leftrightarrow\dfrac{a+b}{b}+\dfrac{a+b}{a}\ge4\)

\(\Rightarrow\left(a+b\right)\left(\dfrac{1}{b}+\dfrac{1}{a}\right)\ge4\) (đpcm)

Vậy..........

17 tháng 6 2016

a) \(a^2+b^2-2ab=a^2-2ab+b^2=\left(a-b\right)^2\ge0\) (1)

b) Từ đẳng thức câu a) \(\Rightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow\frac{a^2+b^2}{2}\ge ab\)

c) Ta có \(a\left(a+2\right)=a^2+2a\)

Từ đẳng thức (1) ta được \(\left(a+1\right)^2=a^2+2a.1+1^2=a^2+2a+1\)

Do a2 + 2a < a2 + 2a + 1 nên a(a + 2) < (a + 1)2

    Chờ tý làm tiếp câu c) d) cho vui

17 tháng 6 2016

a)ta có: (a-b)2\(\ge0\)

=> a2-2ab+b2\(\ge0\)(đpcm)

b)Từ phần a) => \(a^2+b^2-2ab\ge0\)

                     <=> \(a^2+b^2\ge2ab\)

=> \(\frac{a^2+b^2}{2}\ge ab\)(đpcm)

c)ta thấy \(\left(a+1\right)^2-a\left(a+2\right)=1>0\)

=> \(\left(a+1\right)^2>a\left(a+2\right)\)(đpcm)

d)ta thấy: \(m^2+n^2+2-2m-2n=\left(m^2-2m+1\right)+\left(n^2-2n+1\right)\)

                                                             \(=\left(m-1\right)^2+\left(n-1\right)^2\ge0\)

=> \(m^2+n^2+2\ge2\left(m+n\right)\)(đpcm)

e)ta có: \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)=1+\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\)

Áp dụng BĐY cô si có:\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\)

=>  \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2+2=4\)(đpcm)

 

13 tháng 8 2017

a) \(a^2+b^2-2ab\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

ta thấy \(\left(a-b\right)^2\)luôn dương với mọi a;b nên \(\left(a-b\right)^2\ge0\)luôn đúng

b) \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2+2ab\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)

giống câu a \(\left(a-b\right)^2\ge0\)luôn đúng

c)\(a\left(a+2\right)< \left(a+1\right)^2\Leftrightarrow a^2+2a< a^2+2ab+1\Leftrightarrow0< 1\)đương nhiên

còn 2 câu nưa thì nhờ bạn khác giúp nhé có gì không hiểu thì nhắn tin hỏi mình nhá

1 tháng 8 2020

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

27 tháng 7 2020

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

25 tháng 6 2019

17) \(\frac{10x^2-7x-5}{2x-3}\) là số nguyên khi 10x² - 7x - 5 \(⋮\) 2x - 3

Ta có: 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7

\(\Rightarrow\) 10x² - 7x - 5 \(⋮\) 2x - 3 khi và chỉ khi 7 chia hết cho 2x-3

\(\Rightarrow\) 2x - 3 \(\in\) Ư(7) \(\Leftrightarrow\) 2x - 3 = \(\left\{-1;1;-7;7\right\}\)
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là \(\left\{-2;1;2;5\right\}\)

25 tháng 6 2019

23) Cm rằng

a) a2+b2−2ab ≥0

Ta có: a2+b2−2ab = a2−2ab+b2 = (a - b)2 ≥ 0 (đpcm)

b)\(\frac{a^2+b^2}{2}\) ≥ ab

Ta có: (a-b)2 ≥0 vs mọi a,b

\(\Leftrightarrow\) a2−2ab+b2 ≥0

\(\Leftrightarrow\) a2+b2 ≥ 2ab

\(\Leftrightarrow\) \(\frac{a^2+b^2}{2}\) ≥ ab (đpcm)

c) a(a+2)<(a+1)2

Ta có: a(a+2)= a2+2a

(a+1)2 = a2 + 2a + 1

\(\Rightarrow\) a(a+2)<(a+1)2 (đpcm)

d) m2+n2+2 ≥ 2(m+n)

Ta có: (m-n)2 \(\ge\) 0

\(\Leftrightarrow\) m2- 2mn+n2 \(\ge\) 0

\(\Leftrightarrow\) m2+n2 \(\ge\) 2mn

\(\Leftrightarrow\) m2+n2+2 \(\ge\) 2mn+2

\(\Leftrightarrow\) m2+n2+2 ≥ 2(m+n) (đpcm)

e) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (với a>0, b>0)

Ta có: (a - b)2 ≥ 0

\(\Leftrightarrow\) a2−2ab+b2 ≥ 0

\(\Leftrightarrow\) a2+2ab - 4ab+b2 ≥ 0

\(\Leftrightarrow\) (a + b)2 - 4ab≥ 0

\(\Leftrightarrow\) (a + b)2 ≥ 4ab

\(\Leftrightarrow\) \(\frac{\left(a+b\right)^2}{ab}\) ≥ 4

\(\Leftrightarrow\) (a+b) ( \(\frac{a+b}{ab}\) ) ≥ 4

\(\Leftrightarrow\) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))≥4 (vs a,b > 0) (đpcm)