K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

Áp dụng BĐT AM - GM dạng ngược ta dễ có:

\(\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{2}{a+b+b+c}=\frac{2}{\left(a+2b+c\right)}\)

Tương tự:

\(\frac{1}{\sqrt{\left(b+c\right)\left(c+a\right)}}\ge\frac{2}{\left(b+2c+a\right)}\frac{1}{\sqrt{\left(c+a\right)\left(a+b\right)}}\ge\frac{2}{2\left(c+2a+b\right)}\)

Khi đó:

\(P\ge2\left(\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\right)\)

\(\ge\frac{9}{2\left(a+b+c\right)}=\frac{3}{4}\)

Đẳng thức xảy ra tại a=b=c=2

3 tháng 8 2020

Gáy cach nua.

Chứng minh: \(\Sigma\frac{1}{\sqrt{\left(a+b\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)}\)

Theo Holder, cần c.m

\(\frac{3^3}{\left(a+b\right)\left(a+c\right)+\left(b+c\right)\left(c+a\right)+\left(c+a\right)\left(a+b\right)}\ge\frac{81}{4\left(a+b+c\right)^2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

Done

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$P^2=(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2\leq (a+b+b+c+c+a)(1+1+1)=6(a+b+c)=6$

$\Rightarrow P\leq \sqrt{6}$

Vậy gtln của $P$ là $\sqrt{6}$. Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

11 tháng 12 2019

ai làm đi

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:
\(a+b+c=\sqrt{a}+\sqrt{b}+\sqrt{c}=2\)

\(\Rightarrow (\sqrt{a}+\sqrt{b}+\sqrt{c})^2=4\)

\(\Leftrightarrow a+b+c+2(\sqrt{ab}+\sqrt{bc}+\sqrt{ac})=4\)

\(\Leftrightarrow \sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\frac{4-(a+b+c)}{2}=1\)

\(\Rightarrow a+1=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{c})\)

Tương tự:

$b+1=(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})$
$c+1=(\sqrt{c}+\sqrt{a})(\sqrt{c}+\sqrt{b})$

Khi đó:

\(A=\left[\frac{\sqrt{a}}{(\sqrt{a}+\sqrt{b})(\sqrt{a}+\sqrt{c})}+\frac{\sqrt{b}}{(\sqrt{b}+\sqrt{a})(\sqrt{b}+\sqrt{c})}+\frac{\sqrt{c}}{(\sqrt{c}+\sqrt{a})(\sqrt{c}+\sqrt{b})}\right]\sqrt{(a+1)(b+1)(c+1)}\)

\(\frac{\sqrt{a}(\sqrt{b}+\sqrt{c})+\sqrt{b}(\sqrt{c}+\sqrt{a})+\sqrt{c}(\sqrt{a}+\sqrt{b})}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})}.\sqrt{(\sqrt{a}+\sqrt{b})^2(\sqrt{b}+\sqrt{c})^2(\sqrt{c}+\sqrt{a})^2}\)

\(=\frac{2(\sqrt{ab}+\sqrt{bc}+\sqrt{ca})}{(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})}.(\sqrt{a}+\sqrt{b})(\sqrt{b}+\sqrt{c})(\sqrt{c}+\sqrt{a})\)

\(=2(\sqrt{ab}+\sqrt{bc}+\sqrt{ac})=2\)

 

30 tháng 6 2023

Từ giả thiết ta có: `1/a+1/b+1/c=0=>ab+bc+ca=0`

Ta có:
`sqrt(a+c)+sqrt(b+c)=\sqrt(a+b)`

`=>(sqrt(a+c)+sqrt(b+c))^2=(sqrt(a+b))^2`

`<=>2c+2\sqrt((a+c)(b+c))=0`

`<=>2c+2\sqrt(ab+bc+ca+c^2)=0`

`<=>2\sqrt(c^2)+2c=0`

`<=>|c|+c=0(**)`

- Nếu `c>=0` thì `(**)<=>2c=0<=>c=0(` Mâu thuẫn với điều kiện toán học do không tồn tại `1/c=1/0)`

Vậy `c<0` do đó `(**)<=>0=0(` Luôn đúng `)`

Vậy ta có `đfcm`

30 tháng 6 2023

Một cách đánh giá khác, bạn có thể tham khảo thêm. Đây là cách khác thôi chứ trên bài mình làm đầy đủ rồi nhé.

-------------

Từ giả thiết `a;b>0` và `1/a+1/b+1/c=0` ta suy ra `c<0`

( Vì nếu  `c=0` thì `1/a+1/b+1/c` chưa được xác định do mẫu bằng `0` và `a,b,c>0` thì `1/a;1/b;1/c>0` nên dẫn đến `1/a+1/b+1/c>0` mâu thuẫn do vậy `c<0`)

-----

Bản chất nó vẫn là 1 nếu bạn ghi cái này lên trên đầu thì không phải xét `c>=0` nữa nhé.  Không thì bạn cứ làm theo bài mình trên là đúng rồi, đây chỉ nói thêm thôi.

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

$\frac{1}{c}=-(\frac{1}{a}+\frac{1}{b})< 0$ do $a,b>0$

$\Rightarrow c< 0$

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ac=0$

Từ đây ta có:

\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)

\(=a+b+2c+2\sqrt{ab+bc+ac+c^2}=a+b+2c+2\sqrt{c^2}\)

\(=a+b+2c+2|c|=a+b+2c+2(-c)=a+b\)

\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) (do \(\sqrt{a+c}+\sqrt{b+c}\geq 0\))

Ta có đpcm.