K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Lời giải:

Xét hiệu: $a^3+b^3-ab(a+b)=(a-b)^2(a+b)\geq 0$ với mọi $a,b>0$

$\Rightarrow a^3+b^3\geq ab(a+b)$

Hoàn toàn tương tự: $b^3+c^3\geq bc(b+c); c^3+a^3\geq ca(c+a)$

Do đó:

$2a^3+b^3+c^3+2=(a^3+b^3)+(a^3+c^3)+2abc\geq ab(a+b)+ac(a+c)+2abc$

$=a(ab+b^2+ac+c^2+2bc)=a[(b^2+c^2+2ab+a(b+c)]=a[(b+c)^2+a(b+c)]$

$=a(b+c)(a+b+c)$

$\Rightarrow \frac{1}{2a^3+b^3+c^3+2}\leq \frac{1}{a(b+c)(a+b+c)}=\frac{bc}{(b+c)(a+b+c)}$

Áp dụng BĐT AM-GM: $bc\leq \frac{(b+c)^2}{4}$ nên:

$\frac{1}{2a^3+b^3+c^3+2}\leq \frac{b+c}{4(a+b+c)}$

Tương tự với các phân thức còn lại:

$\Rightarrow \sum \frac{1}{2a^3+b^3+c^3+2}\leq \frac{2(a+b+c)}{4(a+b+c)}=\frac{1}{2}$

(đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

https://www.google.com/search?q=cho+abc%3D1.+cm+1%2F2a%5E3%2Bb%5E3%2Bc%5E3%2B2%3C1%2F2&rlz=1C1NHXL_viVN846VN846&oq=cho+abc%3D1.+cm+1%2F2a%5E3%2Bb%5E3%2Bc%5E3%2B2%3C1%2F2&aqs=chrome..69i57.4867j0j7&sourceid=chrome&ie=UTF-8

29 tháng 4 2019

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}\right)\)

Dấu " = " xảy ra <=> a=b

Áp dụng : 

\(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3+1\right)+\left(a^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{a^3+c^3+1}\right)\)

Tương tự: \(\frac{1}{2b^3+c^3+a^3+2}=\frac{1}{\left(a^3+b^3+1\right)+\left(b^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}\right)\)

                 \(\frac{1}{2c^3+b^3+a^3+2}=\frac{1}{\left(c^3+b^3+1\right)+\left(a^3+c^3+1\right)}\le\frac{1}{4}.\left(\frac{1}{c^3+b^3+1}+\frac{1}{a^3+c^3+1}\right)\)

Cộng vế với vế của 3 BĐT trên ta có:

\(\Sigma\frac{1}{2a^3+b^3+c^3+2}\le\frac{1}{4}.2.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\)\(=\frac{1}{2}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\)

Ta chứng minh BĐT phụ:

\(a^3+b^3\ge ab\left(a+b\right)\)

Thật vậy!

Có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2-ab\ge ab\)

\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-ab\right)\ge ab\left(a+b\right)\)( vì a,b>0 => a+b>0)

\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

                              đpcm

Dấu " = " xảy ra <=> a=b

Áp dụng: \(\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}\)

Tương tự:\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(b+c\right)+abc}=\frac{1}{bc\left(a+b+c\right)}\) 

               \(\frac{1}{a^3+c^3+1}\le\frac{1}{ac\left(a+c\right)+abc}=\frac{1}{ac\left(a+b+c\right)}\)

Cộng vế với vế của 3 BĐT trên ta có:

\(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le\)\(\frac{1}{ab\left(a+b\right)}+\frac{1}{bc\left(b+c\right)}+\frac{1}{ca\left(a+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)

\(\Rightarrow\Sigma\frac{1}{2a^3+b^3+c^3+2}\le\frac{1}{2}.\left(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\right)\le\frac{1}{2}.1=\frac{1}{2}\)

Dấu " = " xảy ra <=> a=b=c=1 

Tham khảo nhé~

Áp dụng BĐT Cô-si ta có:

\(a^2+b^2\ge2ab;b^2+1^2\ge2b\)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2\)

\(\Rightarrow a^2+2b^2+3\ge2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}=\frac{1}{2}.\frac{1}{ab+b+1}\)

chứng minh tương tự

\(\Rightarrow\frac{1}{b^2+2c^2+3}\le\frac{1}{2}.\frac{1}{bc+c+1};\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ac+a+1}\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\frac{1}{ab+b+1}+\frac{1}{2}.\frac{1}{bc+c+1}+\frac{1}{2}.\frac{1}{ac+a+1}\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

đặt \(A=\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\)

\(=\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\)

\(=\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}=\frac{ac+a+1}{ac+a+1}=1\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.1=2\)

=>đpcm

30 tháng 4 2016
Bài này mk giải được nè chiều mk giải cho nha
21 tháng 3 2017

Bài này chả khó với lại đầy người đăng rồi

Ta có: \(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)

Tương tự ta có: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)

Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:

\(VT\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)

\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}=VP\) (ĐPCM)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

21 tháng 3 2017

Đẳng thức xảy ra khi a = b = c = 1/3

Bài này không khó! Sao lại được vào câu hỏi hay?

5 tháng 12 2016

Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(;b^2+1\ge2\sqrt{b^2\cdot1}=2b\)

\(\Rightarrow a^2+2b^2+3\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}\left(ab+b+1\right)\left(1\right)\). Tương tự ta có:

\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\left(bc+c+1\right)\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(ac+a+1\right)\left(3\right)\)

Cộng theo vế của (1);(2) và (3) ta có:

\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

\(\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\) (vì abc=1)

Suy ra Đpcm. Dấu "=" khi a=b=c=1

13 tháng 5 2017

Xem câu hỏi

AH
Akai Haruma
Giáo viên
16 tháng 1 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Ngo Hiệu - Toán lớp 9 | Học trực tuyến

7 tháng 5 2021

Ta có: 

\(\frac{1}{a^2+2b^2+3}=\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\frac{1}{2ab+2b+2}=\frac{1}{2}\cdot\frac{1}{ab+b+1}\)

Tương tự CM được:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\cdot\frac{1}{bc+c+1}\) và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\cdot\frac{1}{ca+a+1}\)

\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab^2c+abc+ab}+\frac{b}{abc+ab+b}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)=\frac{1}{2}\cdot1=\frac{1}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

7 tháng 5 2021

A=\(\frac{1}{a^2+2b^2+3}\)+\(\frac{1}{b^2+2c^2+3}\)+\(\frac{1}{c^2+2a^2+3}\)

ta có: \(\frac{1}{a^2+2b^2+3}\)=\(\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\)\(\le\)\(\frac{1}{2\left(ab+b+1\right)}\)

vì : a2+b2\(\ge\)2\(\sqrt{a^2b^2}\)=2ab

b2+1\(\ge\)2\(\sqrt{b^2x1}\)=2b

cmtt => A\(\le\)\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{1}{bc+c+1}\)+\(\frac{1}{ca+a+1}\))

=\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab^2c+abc+ab}\)+\(\frac{b}{cba+ab+b}\))

=\(\frac{1}{2}\)x (\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab+b+1}\)+\(\frac{b}{ab+b+1}\))=\(\frac{1}{2}\)x\(\frac{ab+b+1}{ab+b+1}\)=\(\frac{1}{2}\)

dấu "=" xảy ra <=> a=b=c=1

5 tháng 7 2020

Áp dụng bđt Cauchy cho 2 số không âm :

\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)

\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)

Cộng vế với vế ta được :

\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)

Vậy ta có điều phải chứng mình 

5 tháng 7 2020

Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *

Khi đó:

\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)

Tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)

\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)