K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

la \(\le\) ko phai la <

14 tháng 12 2015

\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)=>\(a+b\ge\frac{4ab}{a+b}\Leftrightarrow\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=>\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

=>\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ac}{b+1}\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)

                                             =\(\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

dau bang xay ra <=>a=b=c=\(\frac{1}{3}\)

NV
22 tháng 4 2019

Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\)

\(\Leftrightarrow\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\ge\frac{2}{\sqrt{ab}}+\frac{2}{\sqrt{ac}}+\frac{2}{\sqrt{bc}}\)

\(\Leftrightarrow\frac{1}{a}-\frac{2}{\sqrt{ab}}+\frac{1}{b}+\frac{1}{a}-\frac{2}{\sqrt{ac}}+\frac{1}{c}+\frac{1}{b}-\frac{2}{\sqrt{bc}}+\frac{1}{c}\ge0\)

\(\Leftrightarrow\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{c}}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{c}}\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh, dấu "=" xảy ra khi \(a=b=c\)

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

13 tháng 4 2018

theo bất đẳng thức côsi ta có :

\(\left(a+b\right)^2\ge4ab\)

\(\left(b+c\right)^2\ge4bc\)

\(\left(c+a\right)^2\ge4ca\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

21 tháng 12 2016

hay