K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2020

Theo giả thiết: \(xyz=x+y+z+2\)

\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\)\(=\left(xy+yz+zx\right)+2\left(x+y+z\right)+3\)

\(\Leftrightarrow\left(xy+x+y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\)\(=\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\). Đặt \(a=\frac{1}{x+1};b=\frac{1}{y+1};c=\frac{1}{z+1}\)

Khi đó a + b + c = 1 và \(x=\frac{1-a}{a}=\frac{b+c}{a}\);\(y=\frac{1-b}{b}=\frac{c+a}{b}\);\(z=\frac{1-c}{c}=\frac{a+b}{c}\)

Ta cần chứng minh \(x+y+z+6\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z+6\ge\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2-\left(x+y+z\right)\)

\(\Leftrightarrow\sqrt{2\left(x+y+z+3\right)}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{2\left[\left(x+1\right)+\left(y+1\right)+\left(z+1\right)\right]}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow\sqrt{\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)}\)\(\ge\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}}\)

BĐT cuối hiển nhiên đúng vì đây là BĐT Bunyakovski do đó bài toán được chứng minh.

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)hay x = y = z = 2

AH
Akai Haruma
Giáo viên
18 tháng 1 2020

Bạn có thể tham khảo lời giải tại đây:

Câu hỏi của Toán Chuyên Học - Toán lớp 9 | Học trực tuyến

20 tháng 8 2023

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

2 tháng 4 2021

Đặt \(A=\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)

Ta có:

\(x^2+xy+yz+zx=x+xyz=x\left(x+yz\right)\)

\(\Rightarrow\frac{x\left(x+yz\right)}{x}=\frac{x^2+xy+yz+zx}{x}\)

\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+zx}{x}=\frac{\left(x^2+xy\right)+\left(yz+zx\right)}{x}=\frac{\left(x+z\right)\left(x+y\right)}{x}\)

\(\Rightarrow\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)

Vì x, y, z >0 nên áp dụng bất đẳng thức Bunhiacopxki cho 2 số dương, ta được:

\(\left(x+y\right)\left(x+z\right)\ge\left(\sqrt{x^2}.+\sqrt{yz}\right)^2\)

\(\Rightarrow\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

\(\Rightarrow\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\)

Do đó \(\sqrt{x+yz}\ge\frac{x+\sqrt{yz}}{\sqrt{x}}\left(1\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{y+xz}\ge\frac{y+\sqrt{xz}}{\sqrt{y}}\left(2\right)\)

Chứng minh tương tự, ta được:

\(\sqrt{z+xy}\ge\frac{z+\sqrt{xy}}{\sqrt{z}}\left(3\right)\)

Từ (1), (2) và (3), ta được:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)\(\ge\frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{zx}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{yz+zx+xy}{\sqrt{xyz}}\)

 \(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}\)(vì \(xy+yz+zx=xyz\))

\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)(điều phải chứng minh).

Dấu bằng xảy ra.

\(\Leftrightarrow\hept{\begin{cases}x=y=z>0\\xy+yz+zx=xyz\end{cases}}\Leftrightarrow x=y=z=3\)

Vậy với x, y, z là các số thực dương thỏa mãn xy + yz + zx =xyz thì:

\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\).

\(\)

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

AH
Akai Haruma
Giáo viên
20 tháng 3 2019

Lời giải:

Từ điều kiện \(x+y+z+2=xyz\) ta có một đẳng thức rất đẹp là \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)

\(\Rightarrow \frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2(*)\)

(lớp 9 mình đã rất sung sướng khi phát hiện ra nó, dù không mới mẻ. Tất nhiên không thể tự nhiên mà có được đẳng thức như thế này, nó tùy thuộc vào khả năng suy luận ngược hoặc thói quen biến đổi các đẳng thức cơ bản)

Khi đó, áp dụng BĐT Bunhiacopxky ta có:

\((x+1+y+1+z+1)\left(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\right)\geq (\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)

\(\Leftrightarrow 2(x+y+z+3)\ge (\sqrt{x}+\sqrt{y}+\sqrt{z})^2\)

\(\Leftrightarrow x+y+z+6\geq 2(\sqrt{xy}+\sqrt{yz}+\sqrt{xz})\)

Ta có đpcm.

Dấu "=" xảy ra khi \(x=y=z=2\)

26 tháng 12 2019

Áp dụng BĐT Cô - si cho 3 số không âm:

\(1+x^3+y^3\ge3\sqrt[3]{1.x^3y^3}=3xy\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\)

Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3}}{\sqrt{zx}}\)

Cộng các vế của các BĐT trên, ta được:

\(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge\)\(\frac{\sqrt{3}}{\sqrt{xy}}\)\(+\frac{\sqrt{3}}{\sqrt{yz}}\)\(+\frac{\sqrt{3}}{\sqrt{zx}}\)

Tiếp tục áp dụng Cô - si:

\(BĐT\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}.\frac{\sqrt{3}}{\sqrt{yz}}.\frac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\)

Vậy \(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)

(Dấu "="\(\Leftrightarrow x=y=z=1\))

29 tháng 12 2019

\(x^3+y^3+1=x^3+y^3+xyz\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)

Tương tự:

\(y^3+z^3+1\ge yz\left(x+y+z\right);z^3+x^3+1\ge zx\left(x+y+z\right)\)

\(\Rightarrow VT\ge\frac{\sqrt{xy\left(x+y+z\right)}}{xy}+\frac{\sqrt{yz\left(x+y+z\right)}}{yz}+\frac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)

\(\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\frac{1}{\sqrt{xy}\cdot\sqrt{yz}\cdot\sqrt{zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra tại \(x=y=z=1\)

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+zx}+\sqrt{z\left(x+y+z\right)+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\). (1)

Theo bđt Bunhiakowski:

\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\).

Tương tự: \(\sqrt{\left(y+z\right)\left(y+x\right)}\ge y+\sqrt{zx}\)\(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\).

Cộng vế với vế và kết hợp với gt x + y + z = 1 ta có (1) đúng.

Vậy ta có đpcm.

NV
15 tháng 1 2021

\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)

Tương tự:

\(\sqrt{y+zx}\ge y+\sqrt{zx}\) ; \(\sqrt{z+xy}\ge z+\sqrt{xy}\)

Cộng vế với vế:

\(VT\ge\left(x+y+z\right)+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=...\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)