K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Áp dụng bdt Cauchy-Schwars

\(\frac{1}{a}+\frac{4}{b}+\frac{9}{c}\ge\frac{\left(1+2+3\right)^2}{a+b+c}=36\)

"=" <=> \(\left\{{}\begin{matrix}\frac{1}{a}=\frac{2}{b}=\frac{3}{c}\\a+b+c=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{6}\\b=\frac{1}{3}\\c=\frac{1}{2}\end{matrix}\right.\)

11 tháng 11 2018

giỏi thì làm bài nÀY nèk

chứ mấy bác cứ đăng linh ta linh tinh lên online math

11 tháng 11 2018

Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ

đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh

tích mình đi

làm ơn

rùi mình

tích lại

thanks

27 tháng 7 2018

k mk đi 

23 tháng 1 2017

i don't no TT

mình chưa học tới 

11 tháng 11 2017

Ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tụ ta có:

\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(=3+3-\frac{ab+bc+ca+3}{2}\)

\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)

30 tháng 6 2020

Theo đánh giá bởi Bunhiacopski ta dễ có:

\(\frac{a}{b^4+c^4+a}=\frac{a\left(1+1+a^3\right)}{\left(b^4+c^4+a\right)\left(1+1+a^3\right)}\le\frac{a^4+a+a}{\left(a^2+b^2+c^2\right)^2}\)

Tương tự rồi cộng lại ta được:

\(T\le\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\)

Ta đi chứng minh:

\(\frac{a^4+b^4+c^4+2a+2b+2c}{\left(a^2+b^2+c^2\right)^2}\le1\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge a^4+b^4+c^4+2a+2b+2c\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a+b+c\)

Mà \(LHS\ge abc\left(a+b+c\right)=a+b+c\Rightarrow T\le1\)

Đẳng thức xảy ra tại a=b=c=1

16 tháng 5 2017

Đặt \(\hept{\begin{cases}a+b+c=p\\ab+bc+ca=q\\abc=r\end{cases}}\)

Thì ta có:

\(\hept{\begin{cases}p^2-2q=3\\A=2p+\frac{q}{r}\end{cases}}\)

Ta có: \(3pr\le q^2\) (cái này dễ thấy nên mình không chứng minh nha)

\(\Leftrightarrow\frac{q}{r}\ge\frac{3p}{q}=\frac{6p}{2q}=\frac{6p}{p^2-3}\)

Thế vô A ta được

\(A=2p+\frac{q}{r}\ge2p+\frac{6p}{p^2-3}\)

Ta chứng minh \(2p+\frac{6p}{p^2-3}\ge9\)

\(\Leftrightarrow2p^3-9p^2+27\ge0\)

\(\Leftrightarrow\left(p-3\right)^2\left(2p+3\right)\ge0\) (đúng)

Vậy GTNN là A = 9

15 tháng 5 2017

bài này vừa read buổi tối này nek, xài UCT ,tiện thể cho hỏi lun do máy t lỗi hay do hệ thống z , k load bài nào luôn 

30 tháng 12 2016

\(\frac{9}{2\left(ab+bc+ca\right)}+\frac{2}{a^2+b^2+c^2}\)

\(=\frac{1}{2\left(ab+bc+ca\right)}+2.\left(\frac{4}{2\left(ab+bc+ca\right)}+\frac{1}{a^2+b^2+c^2}\right)\)

\(\ge\frac{1}{2.\frac{\left(a+b+c\right)^2}{3}}+2.\frac{\left(2+1\right)^2}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\)

\(=\frac{1}{2.\frac{1}{3}}+2.\frac{9}{1}=\frac{39}{2}\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

13 tháng 1 2017

tao ko biet