K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 2 2020

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq (6x+3y+2z)(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})$

Mà: $6x+3y+2z=3x+(x+y)+2(x+y+z)\leq 3.1+5+2.14=36$

Do đó: $(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq 36.(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})=36$

$\Rightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}\leq 6$ (đpcm)

Dấu "=" xảy ra khi $x=1; y=2; z=3$

AH
Akai Haruma
Giáo viên
2 tháng 2 2020

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq (6x+3y+2z)(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})$

Mà: $6x+3y+2z=3x+(x+y)+2(x+y+z)\leq 3.1+5+2.14=36$

Do đó: $(\sqrt{x}+\sqrt{y}+\sqrt{z})^2\leq 36.(\frac{1}{6}+\frac{1}{3}+\frac{1}{2})=36$

$\Rightarrow \sqrt{x}+\sqrt{y}+\sqrt{z}\leq 6$ (đpcm)

Dấu "=" xảy ra khi $x=1; y=2; z=3$

27 tháng 8 2018

Áp dụng BĐT Bu-nhi-a, ta có \(\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\right)^2\le3\left(2x+2y+2z\right)=6\)

=> A\(\le\sqrt{6}\)

dấu = xảy ra <=> x=y=z=1/3

9 tháng 12 2020

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)

1 tháng 2 2023

Áp dụng BĐT cô si với ba số không âm ta có :

1(�+1)2+�+18+�+18≥31643=34

=> 1(�+1)2≥34−�+14 (1)

Dấu '' = '' xảy ra khi x = 1 

CM tương tự ra có " 1(�+1)2≥34−�+14(2) ; 1(�+1)2≥34−�+14 (3)

Dấu ''= '' xảy ra khi y = 1 ; z = 1 

Từ (1) (2) và (3) => 1(�+1)2+1(�+1)2+1(�+1)2≥34⋅3−�+�+�+34≥94−3���3+34=94−64=34

BĐT được chứng minh 

Dấu '' = '' của bất đẳng thức xảy ra khi x =y =z = 1

:()

10 tháng 10 2016

Áp dụng Bđt \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Ta có:

\(A^2\le6\left(x+y+z\right)=6\)

\(\Leftrightarrow A\le\sqrt{6}\)(Đpcm)

20 tháng 8 2017

1933 -109

25 tháng 8 2017

bạn sử dụng bất đẳng thức : 3 ( a\(^2\)+ b\(^2\)+ c\(^2\)\(\le\)( a + b + c )\(^2\)

rồi thay : a = x + y ; b = y + z ; c = z + x là được

25 tháng 8 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(VT^2=\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\)

\(\le\left(1+1+1\right)\cdot2\cdot\left(x+y+z\right)\)

\(=3\cdot2\cdot1=6=VP^2\)

Xảy ra khi \(x=y=z=\frac{1}{3}\)

15 tháng 6 2017

a/ \(\frac{1}{1+x}+\frac{1}{1+y}\le\frac{2}{1+\sqrt{xy}}\)

\(\Leftrightarrow\left(1+x\right)\left(1+\sqrt{xy}\right)+\left(1+y\right)\left(1+\sqrt{xy}\right)-2\left(1+x\right)\left(1+y\right)\le0\)

\(\Leftrightarrow x\sqrt{xy}+2\sqrt{xy}+y\sqrt{xy}-x-y-2xy\le0\)

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\le0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\le0\) đúng vì \(x,y\le1\)

b/ Vì \(\hept{\begin{cases}0\le x\le y\le z\le t\\yt\le1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}xz\le1\\yt\le1\end{cases}}\)

Áp dụng câu a ta được

\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+t}\le\frac{2}{1+\sqrt{xz}}+\frac{2}{1+\sqrt{yt}}\le\frac{4}{1+\sqrt[4]{xyzt}}\)

15 tháng 6 2017

khó quá