K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Ta có BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\) với x, y > 0(dễ dàng chứng minh)

Áp dụng vào suy ra \(A\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(A\le\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\)

\(=\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{1}{\left(a+b+c\right)}\left(\frac{a+b+c}{abc}\right)=\frac{1}{abc}=1\) (rút thừa số chung 1/(a+b+c) ra rồi quy đồng và rút gọn)

5 tháng 8 2019

Ta có BĐT sau: x3+y3≥xy(x+y) với x, y > 0(dễ dàng chứng minh)

Áp dụng vào suy ra A≤1ab(a+b)+1+1bc(b+c)+1+1ca(c+a)+1

A≤1ab(a+b)+abc+1bc(b+c)+abc+1ca(c+a)+abc

=1ab(a+b+c)+1bc(a+b+c)+1ca(a+b+c)

=1(a+b+c)(a+b+cabc)=1abc=1 (rút thừa số chung 1/(a+b+c) ra rồi quy đồng và rút gọn)

28 tháng 4 2020

Đặt \(a=x^2;b=y^2;c=z^2\)khi đó ta được xyz=1 và biểu thức P viết được thành

\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2x^2+3}+\frac{1}{z^2+2x^2+3}\)

Ta có \(x^2+y^2\ge2xy;y^2+1\ge2y\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\)

Do đó ta được \(\frac{1}{x^2+2y^2+3}\le\frac{1}{2}\cdot\frac{1}{xy+y+1}\)

Chứng minh tương tự ta có:

\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2}\cdot\frac{1}{yz+z+1};\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot\frac{1}{zx+z+1}\)

Cộng các vế BĐT trên ta được

\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Ta cần chứng minh \(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}=1\)

Do xyz=1 nên ta được

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{zx}{z+1+zx}+\frac{x}{1+zx+z}+\frac{1}{zx+x+1}=1\)

Từ đó ta được

\(P\le\frac{1}{2}\). Dấu "=" xảy ra <=> a=b=c=1

7 tháng 2 2020

theo bđt cauchy-schwarz ta có \(P\ge\frac{\left(1+1+1\right)^2}{3+2\left(a^3+b^3+c^3\right)}=\frac{9}{3+2\left(a^3+b^3+c^3\right)}\)

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3=3abc}\)\(\Rightarrow P\ge\frac{9}{3+2\cdot3abc}=\frac{9}{3+6}=1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(P_{max}=1\Leftrightarrow a=b=c=1\)

7 tháng 2 2020

Sorry mình viết nhầm nha \(3\sqrt[3]{a^3b^3c^3}=3abc\)mới đúng nha

Dễ chứng minh \(a^3+b^3\ge ab\left(a+b\right)\)với \(a>0,b>0\). Do đó:

\(a^3+b^3+1\ge ab\left(a+b\right)+abcab\left(a+b+c\right)\)

\(A\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)

\(max_A=1\Leftrightarrow a=b=c=1\)

P/s : Các bạn tham khảo nha

25 tháng 12 2019

We have:

\(M=1-\frac{1}{3}\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\)

Consider:

\(\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\ge\frac{3}{2}\)

\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\)

Prove:

\(\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\ge\frac{3}{2}\)

\(\Leftrightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge2\left(a^2+b^2+c^2\right)+27\)

Consider:

\(\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\Sigma_{cyc}a^2+\Sigma_{cyc}ab\)

\(\Rightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab\)

Now we need to prove:

\(4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab=2\Sigma_{cyc}a^2+27\)

\(\Leftrightarrow2\left(a+b+c\right)^2=27\) (not fail)

\(\Rightarrow M\le\frac{1}{2}\)

Sign '=' happen when \(a=b=c=\sqrt{\frac{3}{2}}\)

21 tháng 5 2018

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có : 

\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)

\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)

\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)

Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)

PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))

28 tháng 5 2018

nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm

30 tháng 4 2019

lớn nhất hay nhỏ nhất thế bạn

1 tháng 5 2019

lớn nhất

13 tháng 12 2018

C/m: BDT:  \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)   (1)

That vay ta co:

\(a^3+b^3+abc-ab\left(a+b+c\right)=\left(a+b\right)\left(a-b\right)^2\ge0\)   (luon dung)

Tuong tu ta co:  \(b^3+c^3+abc\ge bc\left(a+b+c\right)\)  (2)

                         \(c^3+a^3+abc\ge ca\left(a+b+c\right)\)   (3)

Tu (1), (2), (3)  suy ra:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)   (dpcm)

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c