K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A C H M N O 1 2 B D

                                                                            Giải:

Xét tam giác vuông AHM và ANM có:

\(\Delta AHM\perpởH;\Delta ANM\perpởN\)

cạnh huyền AM chung

góc nhọn \(\widehat{A_1}=\widehat{A_2}\)

=> tam giác AHM = tam giác ANM ( cạnh huyền-góc nhọn)

=> AH=AN

=> Tam giác AHN cân tại A                    (1)

Tam giác ABH có \(\widehat{AHB}=90^o\)\(\widehat{B}+\widehat{BAH}+\widehat{AHB}=180^o\), mà \(\widehat{B}=60^o;\widehat{AHB}=90^o\)

\(\Rightarrow\widehat{BAH}=30^o\)

Mà: \(\widehat{BAC}=90^o\Rightarrow\widehat{HAN}=\widehat{BAC}-\widehat{BAH}=90^o-30^o=60^o\)(2)

Từ (1) và (2) => tam giác AHN đều

b, Gọi O là giao điểm của AM và HN

Xét tam giác AHO và ANO có:

AH=AN

\(\widehat{A_1}=\widehat{A_2}\)

AO chung

=> tam giác AHO = tam giác ANO (c.g.c)

=> HO=NO

=> O là trung điểm HN        (1)

Ta có: tam giác AHO = tam giác ANO (chứng minh trên)

=>\(\widehat{AOH}=\widehat{AON}\), mà \(\widehat{AOH}+\widehat{AON}=180^o\)

\(\Rightarrow\widehat{AOH}=\widehat{AON}=90^ohayAO\perp HN\) (2)

Từ (1) và (2) => AO là đường trung trực của HN

=> AM là đường trung trực của HN

c, chưa ra

21 tháng 6 2019

H B A C N M D 1 2

CM: a) Xét t/giác AHM và t/giác ANM

có : \(\widehat{AHM}=\widehat{ANM}=90^0\) (gt)

       AM : chung

       \(\widehat{A_1}=\widehat{A_2}\) (gt)

=> t/giác AHM = t/giác ANM (ch - gn)

=> AH = AN (2 cạnh t/ứng)

=> t/giác AHN cân tại A (1)

Xét t/giác ABC có \(\widehat{A}\) = 900 => \(\widehat{ABC}+\widehat{C}\)= 900

Xét t/giác AHC có \(\widehat{AHC}=90^0\) => \(\widehat{HAC}+\widehat{C}=90^0\)

=> \(\widehat{ABC}=\widehat{HAC}\)

Mà \(\widehat{ABC}=60^0\) => \(\widehat{HAC}=60^0\) (hay \(\widehat{HAN}=60^0\))                    (2)

Từ (1) và (2) => t/giác AHN là t/giác đều

b) Ta có: t/giác AHM = t/giác ANM (cmt)

=> HM = MN (2 cạnh t/ứng)

=> M \(\in\)đường trung trực của HN

Ta lại có: AH = AN (cmt)

=> A \(\in\)đường trung trực của HN

mà A \(\ne\) M => AM là đường trung trực của HN

c) Do \(\widehat{DHA}\)là góc ngoài của t/giác AHN 

=> \(\widehat{DHA}=\widehat{HAN}+\widehat{ANH}=2.60^0=120^0\) (t/giác AHN là t/giác đều => góc HAN = góc AHN = góc HNA = 600)

Ta có: \(\widehat{DAH}+\widehat{HAC}=90^0\) => \(\widehat{DAH}=90^0-\widehat{HAC}=90^0-60^0=30^0\) (3)

Xét t/giác AHD có : \(\widehat{ADH}+\widehat{AHD}+\widehat{DAH}=180^0\) (tổng 3 góc của 1 t/giác)

=> \(\widehat{HDA}=180^0-\widehat{DHA}-\widehat{DAH}=180^0-120^0-30^0=30\)(4)

Từ (3) và (4) => \(\widehat{HDA}=\widehat{DAH}=30^0\) => t/giác AHD cân tại H => DH = AH

                                                                                       mà AH = HN (vì t/giác AHN là t/giác đều)

 => DH = HN => AH là trung tuyến của t/giác AND

a: AC=4cm

b: Xét ΔAMH vuông tại H và ΔAMN vuông tại N có

AM chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔAMN

Suy ra: MH=MN; AH=AN

hay AM là đường trung trực của NH

c: Xét ΔAHN có AH=AN

nên ΔAHN cân tại A

mà \(\widehat{HAN}=60^0\)

nên ΔAHN đều

a) Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về đường trung bình của tam giác)

mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM

Xét ΔMBA có MA=MB(cmt)

nên ΔMBA cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MAB}=\widehat{MBA}\)(hai góc ở đáy)

\(\Leftrightarrow\widehat{MAB}=\widehat{HBA}\)(1)

Ta có: ΔAHB vuông tại H(AH\(\perp\)BC tại H)

nên \(\widehat{HBA}+\widehat{HAB}=90^0\)(hai góc nhọn phụ nhau)(2)

Ta có: \(\widehat{BAM}+\widehat{BAD}=\widehat{MAD}\)(tia AB nằm giữa hai tia AM,AD)

hay \(\widehat{BAM}+\widehat{BAD}=90^0\)(3)

Từ (1), (2) và (3) suy ra \(\widehat{BAH}=\widehat{BAD}\)

mà tia AB nằm giữa hai tia AH,AD

nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)

a: Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

hay AH⊥BC

b: Sửa đề: M là trung điểm của AC

Ta có: ΔAHC vuông tại H

mà HM là đường trung tuyến

nên HM=AM=AC/2

Xét ΔMAO và ΔMHO có

MA=MH

MO chung

OA=OH

Do đó: ΔMAO=ΔMHO

Suy ra: \(\widehat{MAO}=\widehat{MHO}=90^0\)

hay HM là tiếp tuyến của (O)

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).