K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2019

A B C D E F O I H M K G P Q J L T

a) Gọi EF cắt AO tại T. Ta thấy AE,AF là các tiếp tuyến từ A tới (O) => OA là trung trực của EF

=> OA vuông góc EF tại T. Áp dụng hệ thức lượng trong tam giác vuông (\(\Delta\)AEO) có OE2 = OT.OA

=> OD2 = OT.OA. Từ đó \(\Delta\)DOT ~ \(\Delta\)AOD (c.g.c) => ^ODT = ^OAD

Cũng từ OA vuông góc EF tại T => ^OTI = 900 = ^ODI => Tứ giác DOTI nội tiếp (OI)

=> ^ODT = ^OIT. Mà ^ODT = ^OAD (cmt) nên ^OAD = ^OIT. Do ^OIT + ^IOT = 900 nên ^OAD + ^IOT = 900

Nếu gọi AD giao OI tại L thì ta có \(\Delta\)AOL vuông tại L hay DG vuông góc OI

Mà DG là một dây của (O) nên OI là trung trực của DG. Theo đó ^IGO = ^IDO = 900

Vậy thì IG tiếp xúc với (O) tại G (đpcm).

b) Gọi DJ là đường kính của (O). Từ B và C lần lượt hạ BP và CQ vuông góc với KJ (P,Q thuộc KJ)

Khi đó ta có ^DGJ = ^DKJ = 900 và BP // DK // CQ (Cùng vuông góc KJ)

Xét \(\Delta\)DGJ và \(\Delta\)AHD: ^DGJ = ^AHD = 900, ^GDJ = ^HAD (AH // DJ) => \(\Delta\)DGJ ~ \(\Delta\)AHD (g.g)

Chú ý M là trung điểm AH, L là trung điểm GD nên dễ có \(\Delta\)JGL ~ \(\Delta\)DHM (c.g.c)

=> ^GJL = ^HDM => ^OLJ = ^BDK (Do OL // GJ) = ^DJK (Vì BC tiếp xúc (O))

Theo câu a: DL vuông góc OI tại L, áp dụng hệ thức lượng trong tam giác vuông (\(\Delta\)ODI) có:

OD2 = OL.OI => OJ2 = OL.OI. Từ đây \(\Delta\)OLJ ~ \(\Delta\)OJI (c.g.c) => ^OLJ = ^OJI hay ^OLJ = ^DJI

Két hợp với ^OLJ = ^DJK (cmt) suy ra ^DJK = ^DJI. Mà K,I cùng phía so với DJ nên JK trùng JI

Hay K,I,J thẳng hàng. Kéo theo I,P,K,Q cũng thẳng hàng. Áp dụng hệ quả ĐL Thales có:

\(\frac{CQ}{BP}=\frac{IC}{IB}\). Lại có \(\frac{EA}{EC}.\frac{FB}{FA}.\frac{IC}{IB}=1\)(ĐL Melelaus) => \(\frac{IC}{IB}=\frac{EC}{FB}\)(Vì EA=FA)

Do đó \(\frac{CQ}{BP}=\frac{EC}{FB}=\frac{CD}{BD}=\frac{QK}{PK}\)(Theo tính chất 2 tiếp tuyến cắt nhau và ĐL Thales)

Kết hợp với ^BPK = ^CQK = 900  suy ra \(\Delta\)BPK ~ \(\Delta\)CQK (c.g.c) => ^BKP = ^CKQ

=> 900 - ^BKP = 900 - ^CKQ => ^BKD = ^CKD => KD là phân giác ^BKC (đpcm).

14 tháng 6 2019

Tứ giác nội tiếp

a) Đường tròn (O)(O) tiếp xúc với AB.BC,CAAB.BC,CA tại D,E,FD,E,F, tức là OO là giao của ba đường phân giác tam giác ABCABC và OD⊥AB,OF⊥AC,OE⊥BCOD⊥AB,OF⊥AC,OE⊥BC

Do đó: ODAˆ+OFAˆ=900+900=1800ODA^+OFA^=900+900=1800

⇒ODAF⇒ODAF là tứ giác nội tiếp.

Hoàn toàn tương tự: ODBE,OECFODBE,OECF nội tiếp.

Từ các tứ giác nội tiếp suy ra:

⎧⎩⎨ODFˆ=OAFˆ=Aˆ2ODEˆ=OBEˆ=Bˆ2{ODF^=OAF^=A^2ODE^=OBE^=B^2 ⇒ODFˆ+ODEˆ=Aˆ2+Bˆ2⇒ODF^+ODE^=A^2+B^2

hay EDFˆ=Aˆ+Bˆ2EDF^=A^+B^2

Tương tự: DEFˆ=Bˆ+Cˆ2DEF^=B^+C^2 và EFDˆ=Aˆ+Cˆ2EFD^=A^+C^2

Vì ABCABC là tam giác nhọn nên các góc đều nhỏ hơn 900900

⇒EDFˆ,DEFˆ,EFDˆ<900⇒EDF^,DEF^,EFD^<900

⇒△DEF⇒△DEF có 3 góc nhọn.

b)

Vì tam giác ABCABC cân tại AA nên ABCˆ=ACBˆABC^=ACB^

⇒ABCˆ=180−BACˆ2=900−Aˆ2⇒ABC^=180−BAC^2=900−A^2

Tứ giác ODAFODAF nội tiếp ⇒ADFˆ=AOFˆ=900−OAFˆ=900−Aˆ2⇒ADF^=AOF^=900−OAF^=900−A^2

Do đó: ABCˆ=ADFˆABC^=ADF^, hai góc này ở vị trí đồng vị nên DF∥BCDF∥BC

c)

{ABCˆ=ACBˆABCˆ=ADFˆ(theo phần b){ABC^=ACB^ABC^=ADF^(theo phần b) ⇒ADFˆ=ACBˆ=FCBˆ⇒ADF^=ACB^=FCB^

⇒BDFC⇒BDFC nội tiếp.

d)

BDBD là tiếp tuyến của (O)(O) nên BDMˆ=DFIˆ=DFBˆBDM^=DFI^=DFB^ (cùng chắn cung DI)

Mà do BDFCBDFC nội tiếp nên DFBˆ=DCBˆDFB^=DCB^

Từ đây suy ra BDMˆ=DCBˆBDM^=DCB^

Xét tam giác BDMBDM và BCDBCD có:

{∠B ChungBDMˆ=BCDˆ(cmt)⇒△BDM∼△BCD(g.g){∠B ChungBDM^=BCD^(cmt)⇒△BDM∼△BCD(g.g)

⇒BDBC=BMBD(1)⇒BDBC=BMBD(1)

Do DF∥BC⇒BDAB=CFACDF∥BC⇒BDAB=CFAC (theo định lý Ta -let) mà AB=AC⇒BD=CF(2)AB=AC⇒BD=CF(2)

Từ (1);(2)⇒BDBC=BMCF(1);(2)⇒BDBC=BMCF (đpcm

~Mik ko chắc~

 Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Đường tròn (J) bàng tiếp góc A tiếp xúc với các đường thẳng BC, CA, AB lần lượt tại D, E, F. Gọi M là trung điểm của BC. Đường tròn đường kính MJ cắt DE tại điểm K khác D. Gọi D là giao điểm thứ hai của đường thẳng AD và (J) .    a) Chứng minh rằng bốn điểm B, D, K, D' cùng nằm trên một đường tròn.    b) Gọi G là giao của BC và EF, đường...
Đọc tiếp

 Cho tam giác ABC nhọn không cân nội tiếp đường tròn (O). Đường tròn (J) bàng tiếp góc A tiếp xúc với các đường thẳng BC, CA, AB lần lượt tại D, E, F. Gọi M là trung điểm của BC. Đường tròn đường kính MJ cắt DE tại điểm K khác D. Gọi D là giao điểm thứ hai của đường thẳng AD và (J) .  
 a) Chứng minh rằng bốn điểm B, D, K, D' cùng nằm trên một đường tròn.  
 b) Gọi G là giao của BC và EF, đường thẳng GJ cắt AB, AC lần lượt tại L và N. Lấy các điểm P, Q lần lượt trên các đường thẳng JB, JC sao cho \(\widehat{PAB}=\widehat{QAC}=90^o\). Các đường thẳng LP và NQ cắt nhau tại T. Gọi S là điểm chính giữa cung BAC của (O) và T là giao của AT với (O). Chứng minh rằng đường thẳng ST' đi qua tâm đường tròn nội tiếp tam giác ABC.

0

a: góc BEC=1/2*180=90 độ

=>CE vuông góc AB

góc BFC=1/2*180=90 độ

=>BF vuông góc AC

góc BEC=góc BFC=90 độ

=>BEFC nội tiếp

góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

b: Xét ΔAEC vuông tại E và ΔAFB vuông tại F có

góc A chung

=>ΔAEC đồng dạng với ΔAFB

=>AE/AF=AC/AB

=>AE*AB=AF*AC

c: góc BHC=góc BOC

góc BHC+góc BAC=180 độ

=>góc BOC+góc BAC=180 độ

=>góc BAC=60 độ

=>góc KOC=60 độ

=>OK/OC=1/2

29 tháng 10 2019

A B C D E F O S K P G T L I M N

Bổ đề: Xét tam giác ABC có X và Y thuộc BC sao cho AX và AY đối xứng nhau qua phân giác góc BAC thì \(\frac{XB}{XC}.\frac{YB}{YC}=\frac{AB^2}{AC^2}\).

Giải bài toán:

Gọi đường thẳng đối xứng với PK qua phân giác của ^EPF cắt EF tại S. Ta sẽ chỉ ra S cố định, thật vậy:

Kéo dài KP cắt EF tại L, PE cắt KC tại T, PF cắt KB tại G, KP cắt GT tại I

Ta có ^GKT = ^PKB + ^PKC = ^PFB + ^PEC = ^PEF + ^PFE = 1800 - ^GPT, suy ra tứ giác PTKG nội tiếp

Suy ra ^PGT = ^PKT = ^PEC = ^PFE do đó GT // FE. Từ đó, áp dụng Bổ đề, ta có biến đổi tỉ số:

\(\frac{LE}{LF}.\frac{SE}{SF}=\frac{PE^2}{PF^2}\Leftrightarrow\frac{SE}{SF}=\frac{PE^2}{PF^2}.\frac{LF}{LE}=\frac{PT^2}{PG^2}.\frac{IG}{IT}=\frac{PT^2}{PG^2}.\frac{IG}{IP}.\frac{IP}{IT}=\frac{PT^2}{PG^2}.\frac{KG}{PT}.\frac{PG}{KT}\)

\(=\frac{PT}{PG}.\frac{KG}{KT}=\frac{ET}{FG}.\frac{KG}{KT}=\frac{KP}{BF}.\frac{CE}{KP}=\frac{CE}{BF}\)

Hạ BN,CM vuông góc với EF, ta dễ có \(\frac{SE}{SF}=\frac{CE}{BF}=\frac{CD}{BD}=\frac{EM}{FN}=\frac{SE+EM}{SF+FN}=\frac{SM}{SN}\)

Chú ý rằng BN // CM và cùng vuông góc EF, do vậy DS vuông góc EF. Mà D,E,F cố định nên S cố định

Vậy ta thu được điều phải chứng minh.