K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

b) Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{1}{1+3ab+a^2}+\frac{1}{1+3ab+b^2}\ge\frac{4}{2+a^2+2ab+b^2+4ab}\)\(=\frac{4}{2+\left(a+b\right)^2+4ab}\) (1)

Dấu " = " xảy ra <=> a=b=0,5

Áp dụng BĐT AM-GM ta có:

\(4ab=4.\sqrt{ab}.\sqrt{ab}\le\frac{4.\left(a+b\right)^2}{4}=\left(a+b\right)^2=1\)(2)

Dấu " = " xảy ra <=> a=b=0,5

Từ (1) và (2)

\(\Rightarrow\frac{1}{1+3ab+a^2}+\frac{1}{1+3ab+b^2}\ge\frac{4}{2+\left(a+b\right)^2+4ab\ge}\frac{4}{3+\left(a+b\right)^2}=\frac{4}{4}=1\)

Dấu " = " xảy ra <=> a=b=0,5

1 tháng 5 2019

P/s : Làm siêu tắt

Ta có :

\(\left(1+\frac{a}{b}\right)^5+\left(1+\frac{b}{a}\right)^5\ge\left(1+\frac{a}{b}\right)\left(1+\frac{b}{a}\right)\left[\left(1+\frac{a}{b}\right)^3+\left(1+\frac{b}{a}\right)^3\right]\ge\left(1+\frac{a}{b}\right)^2\left(1+\frac{b}{a}\right)^2\left(2+\frac{a}{b}+\frac{b}{a}\right)=\frac{\left(a+b\right)^2.\left(a+b\right)^2}{a^2b^2}.\left(2+\frac{a}{b}+\frac{b}{a}\right)\ge\frac{4ab.4ab}{a^2b^2}.\left(2+2\right)=16.4=64\)

( AD BĐT phụ \(x^5+y^5\ge xy\left(x^3+y^3\right);x^3+y^3\ge xy\left(x+y\right)\) và BĐT Cô - si )

Dấu " = " xảy ra \(\Leftrightarrow a=b;a,b>0\)

30 tháng 7 2018

Xin chào, bạn theo dõi lời giải của mình nhé

Áp dụng BĐT Holder và BĐT AM-GM ta có: 

\(VT=\left(2a+\frac{1}{b}+\frac{1}{c}\right)\left(2b+\frac{1}{c}+\frac{1}{a}\right)\left(2c+\frac{1}{a}+\frac{1}{b}\right)\)

\(\ge\left(\sqrt[3]{2a\cdot2b\cdot2c}+\sqrt[3]{\frac{1}{b}\cdot\frac{1}{c}\cdot\frac{1}{a}}+\sqrt[3]{\frac{1}{c}\cdot\frac{1}{a}\cdot\frac{1}{b}}\right)^3\)

\(=\left(2\sqrt[3]{abc}+2\sqrt[3]{\frac{1}{abc}}\right)^3\)\(\ge\left(2\cdot2\sqrt{\sqrt[3]{abc}\cdot\sqrt[3]{\frac{1}{abc}}}\right)^3\)

\(=4^3=64=VP\)

Dấu "=" khi \(a=b=c\)

4 tháng 8 2020

Help me pls

4 tháng 8 2020

ko biết

1 tháng 1 2020

Áp dụng liên tiếp AM - GM và Cauchy - Schwarz ta có :

\(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}\ge\frac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left(a^2+b^2\right)}}\)

   \(=\frac{a^2+ab+1}{\sqrt{a^2+ab+1}}\)

\(=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\)

\(=\frac{1}{\sqrt{5}}\sqrt{\left(\frac{9}{4}+\frac{3}{4}+1+1\right)\left[\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}+a^2+c^2\right]}\)

\(\ge\frac{1}{\sqrt{5}}\left[\frac{3}{2}\left(a+\frac{b}{2}\right)+\frac{3}{4}b+a+c\right]\)

\(=\frac{1}{\sqrt{5}}\left(\frac{5}{2}a+\frac{3}{2}b+c\right)\)

Chứng minh tương tự và công lại ta có đpcm 

Dấu " = " xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

                       

21 tháng 1 2017

Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta có:

\(\begin{align*} \dfrac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}&\ge \dfrac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left (a^2+b^2 \right )}}\\ &=\dfrac{a^2+ab+1}{\sqrt{a^2+ab+1}}\\ &=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\\ &=\dfrac{1}{\sqrt{5}}\sqrt{\left ( \dfrac{9}{4}+\dfrac{3}{4}+1+1 \right )\left [\left ( a+\dfrac{b}{2} \right )^2+\dfrac{3b^2}{4}+a^2+c^2 \right ]}\\ &\ge \dfrac{1}{\sqrt{5}}\left [ \dfrac{3}{2}\left (a+\dfrac{b}{2} \right )+\dfrac{3}{4}b+a+c \right ]\\ &=\dfrac{1}{\sqrt{5}}\left ( \dfrac{5}{2}a+\dfrac{3}{2}b+c \right ) \end{align*}\)

Chứng minh tương tự, cộng lại ta có đpcm.

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

21 tháng 1 2017

bài này cuốn hút thật, lâu lắm ms thấy . xí bài này nhé nghĩ đã lát quay lại làm

10 tháng 2 2016

ai thương mình cho hết âm ai thì sẽ may mắn hết năm

AH
Akai Haruma
Giáo viên
10 tháng 2 2017

Lời giải:

\(\text{VT}=\frac{(a+1)(b+1)(c+1)}{abc}\)

Áp dụng bất đẳng thức AM-GM:

\((a+1)(b+1)(c+1)=[(a+b)+(b+c)][(b+c)+(c+a)][(c+a)+(a+b)]\)

\(\Rightarrow (a+1)(b+1)(c+1)\geq \prod 2\sqrt{(a+b)(b+c)}=8(a+b)(b+c)(c+a)\)

Tiếp tục AM-GM: \((a+b)(b+c)(c+a)\geq (2\sqrt{ab})(2\sqrt{bc})(2\sqrt{ac})=8abc\)

\(\Rightarrow \text{VT}\geq 64\)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)

4 tháng 5 2018

a + b5 + c

= ( a+b+c )

= 0 chia het cho 30

4 tháng 5 2018

Ta có :\(\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)\)

\(=\frac{ab-1}{b}.\frac{bc-1}{c}.\frac{ac-1}{a}\)

Ta lại có : \(\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)\left(c-\frac{1}{c}\right)\)

\(=\frac{a^2-1}{a}.\frac{b^2-1}{b}.\frac{c^2-1}{c}\)