K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

sửa đề lại bạn nhé =) \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)

đặt \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}=k\Rightarrow\hept{\begin{cases}a=kA\\b=kB\end{cases}va\hept{\begin{cases}c=kC\\d=kD\end{cases}}}\)

theo đề bài ta có \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{kA^2}+\sqrt{kB^2}+\sqrt{kC^2}+\sqrt{kD^2}\)

=\(\sqrt{k}\left(A+B+C+D\right)\left(1\right)\)

ta lại có \(\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}=\sqrt{\left(kA+kB+kC+kD\right)\left(A+B+C+D\right)}\)

=\(\sqrt{k\left(A+B+C+D\right)\left(A+B+C+D\right)}=\sqrt{k\left(A+B+C+D\right)^2}=\sqrt{k}\left(A+B+C+D\right)\left(2\right)\)

(1),(2)=> \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)

31 tháng 7 2016

gt thiếu kìa. 

2 tháng 10 2021

\(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+\sqrt{b}}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\left(đk:a\ne b,a\ge0,b\ge0\right)\)

\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+\sqrt{b}\right)}.\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\dfrac{2}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2.2}{\left(\sqrt{a}-\sqrt{b}\right)^2\left(a-1\right)}=\dfrac{2}{a-1}\in Z\)

\(\Rightarrow a-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Do \(a\ge0\)

\(\Rightarrow a\in\left\{0;2;3\right\}\)

 

Ta có: \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)

\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{2}{a-1}\)

\(=\dfrac{2}{a-1}\)

Để P là số nguyên thì \(a-1\in\left\{1;-1;2;-2\right\}\)

hay \(a\in\left\{2;0;3\right\}\)

NV
8 tháng 1 2022

1. Đề sai, ví dụ (a;b;c)=(1;2;2) hay (1;2;7) gì đó

2. Theo nguyên lý Dirichlet, trong 4 số a;b;c;d luôn có ít nhất 2 số đồng dư khi chia 3. 

Không mất tính tổng quát, giả sử đó là a và b thì \(a-b⋮3\)

Ta có 2 TH sau:

- Trong 4 số có 2 chẵn 2 lẻ, giả sử a, b chẵn và c, d lẻ \(\Rightarrow a-b,c-d\) đều chẵn \(\Rightarrow\left(a-b\right)\left(c-d\right)⋮4\)

\(\Rightarrow\) Tích đã cho chia hết 12

- Trong 4 số có nhiều hơn 3 số cùng tính chẵn lẽ, khi đó cũng luôn có 2 hiệu chẵn (tương tự TH trên) \(\Rightarrowđpcm\)

3. Với \(n=1\) thỏa mãn

Với \(n>1\) ta có \(3^n\equiv\left(5-2\right)^n\equiv\left(-2\right)^n\left(mod5\right)\)

\(\Rightarrow n.2^n+3^n\equiv n.2^n+\left(-2\right)^n\left(mod5\right)\)

Mặt khác \(n.2^n+\left(-2\right)^n=2^n\left(n+\left(-1\right)^n\right)\)

Mà \(2^n⋮̸5\Rightarrow n+\left(-1\right)^n⋮5\)

TH1: \(n=2k\Rightarrow2k+1⋮5\Rightarrow2k+1=5\left(2m+1\right)\Rightarrow k=5m+2\)

\(\Rightarrow n=10m+4\)

TH2: \(n=2k+1\Rightarrow2k+1-1⋮5\Rightarrow2k⋮5\Rightarrow k=5t\Rightarrow n=10t+1\)

Vậy với \(\left[{}\begin{matrix}n=10k+4\\n=10k+1\end{matrix}\right.\) (\(k\in N\)) thì số đã cho chia hết cho 5

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vì \(O \in \left( \alpha  \right)\) nên \(O\) là hình chiếu của chính nó lên mặt phẳng \(\left( \alpha  \right)\) theo phương \(d\).

Vì ba điểm \(O,A,B\) thẳng hàng nên ba điểm \(O,A',B'\) thẳng hàng.

\(AA'\parallel BB' \Rightarrow \frac{{AB}}{{OA}} = \frac{{A'B'}}{{OA'}} \Leftrightarrow \frac{{A'B'}}{{AB}} = \frac{{OA'}}{{OA}}\)

a) Để \(A'B' = AB\) thì \(OA' = OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = OA\).

b) Để \(A'B' = 2AB\) thì \(OA' = 2OA\).

Vậy đường thẳng \(d\) song song với \(AA'\) và \(OA' = 2OA\).

23 tháng 1 2019

1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:

\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)

\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )

Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

12 tháng 10 2018

Ta c/m bđt

với \(x,y,z\ge1\) thì: \(\frac{x+y}{1+z}+\frac{y+z}{1+x}+\frac{z+x}{1+y}\ge\frac{6\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}\) (*)

dấu bằng xảy ra khi x=y=z

bđt (*) \(\Leftrightarrow\left(\frac{x+y}{1+z}+1\right)+\left(\frac{y+z}{1+x}+1\right)+\left(\frac{z+x}{1+y}+1\right)\ge\frac{6\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}+3\)

\(\Leftrightarrow\left(x+y+z+1\right)\left(\frac{1}{1+z}+\frac{1}{1+x}+\frac{1}{1+y}\right)\ge\frac{3+9\sqrt[3]{xyz}}{1+\sqrt[3]{xyz}}\)

Ta có: \(1+x+y+z\ge1+3\sqrt[3]{xyz}\)(1)

Với \(x,y\ge1\) ta chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}}\)(2)

\(\Leftrightarrow\frac{2+\left(x+y\right)}{1+\left(x+y\right)+xy}\ge\frac{2}{1+\sqrt{xy}}\Leftrightarrow2+\left(x+y\right)+2\sqrt{xy}+\sqrt{xy}\left(x+y\right)\ge2+2\left(x+y\right)+2xy\)

\(\Leftrightarrow2\sqrt{xy}\left(1-\sqrt{xy}\right)+\left(x+y\right)\left(\sqrt{xy}-1\right)\ge0\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{xy}-1\right)\ge0\)

bđt trên luôn đúng =>DPCM

đợi mình làm vế sau nữa nhé tại máy lag nên làm đk đến đây thôi xíu nữa hoặc mai mik làm vế sau cho nhé

12 tháng 10 2018

Với \(x,y,z\ge1\) ta chứng minh: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\) (3)

\(\Leftrightarrow P=\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{4}{1+\sqrt[3]{xyz}}\)

Áp dụng kết quả (2) ta thu được:

\(P\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{z\sqrt[3]{xyz}}}\ge\frac{4}{1+\sqrt[4]{xyz\sqrt[3]{xyz}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

Từ (1) và (3) suy ra (*) đúng

Trở lại bài toán: ta được bđt đã cho tưởng đương với:

\(\frac{\frac{1}{b}+\frac{1}{c}}{1+\frac{1}{a}}+\frac{\frac{1}{c}+\frac{1}{a}}{1+\frac{1}{b}}+\frac{\frac{1}{a}+\frac{1}{b}}{1+\frac{1}{c}}\ge\frac{\frac{6}{\sqrt[3]{abc}}}{1+\frac{1}{\sqrt[3]{abc}}}\)

Do x,y,z\(\le1\Rightarrow\frac{1}{x},\frac{1}{y},\frac{1}{z}\ge1\). Áp dụng (*) suy ra điều phải chứng minh dấu bằng xảy ra khi a=b=c