K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

Ta có: \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{\left(1+1+1\right)^2}{a+b+b}=\frac{9}{a+2b}\)

Theo BĐT Bu-nhi-a-cốp-xki ta có: 

\(\left(a+2b\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)\le3.3c^2=9c^2\Rightarrow a+2b\le3c\)

\(\Rightarrow\frac{1}{a}+\frac{2}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

14 tháng 12 2019

Đặt \(b=xa;c=ya\Rightarrow a^2+2x^2a^2\le3y^2a^2\Leftrightarrow1+2x^2\le3y^2\)

Ta cần chứng minh:\(\frac{1}{a}+\frac{2}{xa}\ge\frac{3}{ya}\Leftrightarrow1+\frac{2}{x}\ge\frac{3}{y}\)

Vậy ta viết được bài toán thành dạng đơn giản hơn: 

Cho x, y > 0 thỏa mãn \(1+2x^2\le3y^2\). Chứng minh:\(1+\frac{2}{x}\ge\frac{3}{y}\)

Tối về em suy nghĩ tiếp ạ!

16 tháng 12 2019

Ta co:

\(3c^2\ge a^2+b^2+b^2\ge\frac{\left(a+2b\right)^2}{3}\Rightarrow a+2b\le3c\)

\(\Rightarrow VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

Dau '=' xay ra khi \(a=b=c=1\) 

25 tháng 4 2018

Áp dụng BĐT bu-nhi-a ta có \(\left(a+2b\right)^2\le3\left(a^2+2b^2\right)\le9c^2\Rightarrow a+2b\le3c\)

=>\(\frac{1}{a+2b}\ge\frac{1}{3c}\Rightarrow\frac{9}{a+2b}\ge\frac{3}{c}\)

Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{3}{c}\Rightarrow\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\left(ĐPCM\right)\)

8n

Cậu ch0 mik xl nhen! Mik k0 bít làm! Xl rất nhìu

25 tháng 5 2018

Áp dụng bất đẳng thức cauchy- schawarz

\(\left(a^2+2b^2\right)3\ge\left(a+2b\right)^2\)

\(\Rightarrow a^2+2b^2\ge\frac{\left(a+2b\right)^2}{3}\)\(\Rightarrow\frac{\left(a+2b\right)^2}{3}\le3c^2\Leftrightarrow\left(a+2b\right)^2\le9c^2\Leftrightarrow a+2b\le3c\)

áp dụng bất đẳng thức Cauchy - schawarz dạng engel

\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{\left(1+2\right)^2}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

5 tháng 1 2016

Thì bạn cứ biết là áp dụng bđt 

\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\)

5 tháng 1 2016

\(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{4}{2b}\ge\frac{\left(1+2\right)^2}{a+2b}=\frac{9}{a+2b}\) ( BĐT Schwarz )

 Ta cần cm \(a+2b\le3c\)

\(\left(a+2b\right)^2=\left(1\cdot a+\sqrt{2}\cdot b\cdot\sqrt{2}\right)^2\le\left(1^2+\left(\sqrt{2}\right)^2\right)\left(a^2+2b^2\right)=3\left(a^2+2b^2\right)\le3.3c^2=9c^2\)( BUN nhiacopxki )

<=> \(\sqrt{\left(a+2b\right)^2}\le\sqrt{9c^2}\Leftrightarrow a+2b\le3c\) ( XONG ) 

Dấu '' = '' xảy ra khi a = b = c  

 

14 tháng 11 2017

Áp dụng bất đẳng thức bu nhi a ta có

\(\left(a+2b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)=3.\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

=> \(a+2b\le3c\)

Mà \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

=> \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\left(ĐPCM\right)\)

24 tháng 11 2019

bạn tl rất hay

cảm ơn bn

NV
12 tháng 6 2019

\(a+2b=1.a+\sqrt{2}.\sqrt{2}b\le\sqrt{\left(1+2\right)\left(a^2+2b^2\right)}\le\sqrt{3.3c^2}=3c\)

\(\Rightarrow a+2b\le3c\)

\(\Rightarrow\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\) (đpcm)

Dấu "=" khi \(a=b=c\)