K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

Đặt A =  \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

=> A < 1 + (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/(n - 1) - 1/n)

=> A < 1 + (1 - 1/n)

=> A < 2 - 1/n

16 tháng 3 2019

Nguyen svtkvtm Khôi Bùi Nguyễn Việt Lâm Lê Anh Duy Nguyễn Thành Trương DƯƠNG PHAN KHÁNH DƯƠNG An Võ (leo) Ribi Nkok Ngok Bonking ...

26 tháng 9 2019

bú lồn mả bà mày trả 

26 tháng 9 2019

bạn Phạm Hữu Tiến, bạn mất dạy vừa thôi nha mình chưa làm j bạn, mình chỉ hỏi bài các bạn thôi, bạn không trả lời đc thì thôi chứ sao bạn lại nói tục như vậy?????????

25 tháng 12 2018

* t sẽ chứng minh đề thiếu điều kiện \(n>0\)

ĐKXĐ : \(n>0\) hoặc \(n< -1\)

+) Nếu \(n>0\) ta có : 

\(\frac{1}{\sqrt{n^2+1}}< \frac{1}{\sqrt{n^2}}=\frac{1}{\left|n\right|}=\frac{1}{n}\)

\(\frac{1}{\sqrt{n^2+2}}< \frac{1}{n}\)

\(\frac{1}{\sqrt{n^2+3}}< \frac{1}{n}\)

\(............\)

\(\frac{1}{\sqrt{n^2+n}}< \frac{1}{n}\)

\(\Rightarrow\)\(P=\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\frac{1}{\sqrt{n^2+3}}+...+\frac{1}{\sqrt{n^2+n}}>\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\)

\(=n.\frac{1}{n}=1\)

\(\Rightarrow\)\(P< 1\)

+) Nếu \(n< -1\) ta có : 

\(\frac{1}{\sqrt{n^2+1}}< \frac{1}{\sqrt{n^2}}=\frac{1}{\left|n\right|}=\frac{1}{-n}\)

\(\frac{1}{\sqrt{n^2+2}}< \frac{1}{-n}\)

\(\frac{1}{\sqrt{n^2+3}}< \frac{1}{-n}\)

\(............\)

\(\frac{1}{\sqrt{n^2+n}}< \frac{1}{-n}\)

\(\Rightarrow\)\(P=\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+\frac{1}{\sqrt{n^2+3}}+...+\frac{1}{\sqrt{n^2+n}}< \frac{1}{-n}+\frac{1}{-n}+\frac{1}{-n}+...+\frac{1}{-n}\)

\(=n.\frac{1}{-n}=-1\)

\(\Rightarrow\)\(P< -1\)

Vậy nếu \(n>0\) thì \(P< 1\) , nếu \(n< -1\) thì \(P< -1\)

hehe :)) 

25 tháng 12 2018

tuyệt :v

19 tháng 6 2016

Ta có : \(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{\sqrt{k}}{k\left(k+1\right)}=\sqrt{k}\left(\frac{1}{k\left(k+1\right)}\right)=\sqrt{k}\left(\frac{1}{k}-\frac{1}{k+1}\right)=\sqrt{k}\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\left(\frac{1}{\sqrt{k}}+\frac{1}{\sqrt{k+}}\right)\)

\(=\left(1+\frac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)< 2\left(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\right)\)

Áp dụng : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(1-\frac{1}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n+}}< 2\)

Vậy ta có điều phải chứng minh.

13 tháng 8 2019

Đặt P = ... 

* Chứng minh P > 1/2 : 

\(P\ge\frac{\left(1+1+1+...+1\right)^2}{n+1+n+2+n+3+...+n+n}\)

Từ \(n+1\) đến \(n+n\) có n số => tổng \(\left(n+1\right)+\left(n+2\right)+\left(n+3\right)+...+\left(n+n\right)\) là: 

\(\frac{n\left(n+n+n+1\right)}{2}=\frac{n\left(3n+1\right)}{2}\)

\(\Rightarrow\)\(P\ge\frac{n^2}{\frac{n\left(3n+1\right)}{2}}=\frac{2n}{3n+1}\)

Mà \(n>1\)\(\Leftrightarrow\)\(4n>3n+1\)\(\Leftrightarrow\)\(\frac{n}{3n+1}>\frac{1}{2}\)

\(\Rightarrow\)\(P>\frac{1}{2}\)

* Chứng minh P < 3/4 : 

Có: \(\frac{1}{n+1}\le\frac{1}{4}\left(\frac{1}{n}+1\right)\)

\(\frac{1}{n+2}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{2}\right)\)

\(\frac{1}{n+3}\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{3}\right)\)

... 

\(\frac{1}{n+n}=\frac{1}{2n}=\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}\right)\)

\(\Rightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+1+\frac{1}{n}+\frac{1}{2}+\frac{1}{n}+\frac{1}{3}+...+\frac{1}{n}+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(\frac{1}{n}+\frac{1}{n}+\frac{1}{n}+...+\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)\)

\(\Leftrightarrow\)\(P\le\frac{1}{4}\left(n.\frac{1}{n}\right)+\frac{1}{4}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}\right)< \frac{1}{4}+\frac{1}{4}=\frac{2}{4}< \frac{3}{4}\) ( do n>1 ) 

\(\Rightarrow\)\(P< \frac{3}{4}\)