K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

7a có: \(\frac{1}{2}=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow x+y\le1\)

Áp dụng BD7 Cauchy-SChwarz 7a có: 

 \(V7=\frac{x}{y+1}+\frac{y}{x+1}=x-\frac{xy}{y+1}+y-\frac{xy}{x+1}\)

\(\le x+y-\frac{\left(x^2+y^2\right)}{2}\left(\frac{1}{y+1}+\frac{1}{x+1}\right)\)

\(\le1-\frac{\frac{1}{2}}{2}\cdot\frac{4}{1+2}=\frac{2}{3}=VP\)

Dấu "='' khi \(x=y=\frac{1}{4}\)

NV
13 tháng 12 2020

\(VT=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2\)

\(VT\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{25}{2}\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

23 tháng 4 2019

Áp dụng BĐT: \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)( tự c/m)

Dấu " = " xảy ra <=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Áp dụng: \(\frac{x}{1+y^2}+\frac{y}{1+x^2}=\frac{x^2}{x+xy^2}+\frac{y^2}{y+x^2y}\ge\frac{\left(x+y\right)^2}{x+y+x^2y+xy^2}=\frac{2^2}{2+xy\left(x+y\right)}=\frac{4}{2+2xy}\)

Áp dụng BĐT \(\frac{\left(x+y\right)^2}{2}\ge2xy\)( tự c/m)

Dấu " = " xảy ra <=> x=y

Áp dụng: \(\frac{x}{1+y^2}+\frac{y}{1+x^2}\ge\frac{4}{2+2xy}\ge\frac{4}{2+\frac{\left(x+y\right)^2}{2}}=\frac{4}{2+2}=1\)

Dấu " = " xảy ra <=> x=y=1

23 tháng 4 2019

Một lời giải rất quen thuộc đó là dùng cô si ngược dấu:

\(x.\frac{1}{1+y^2}=x\left(1-\frac{y^2}{1+y^2}\right)\ge x\left(1-\frac{y^2}{2y}\right)=x-\frac{xy}{2}\)

Tương tự,ta cũng có: \(\frac{y}{1+x^2}\ge y-\frac{xy}{2}\)

Cộng theo vế hai BĐT trên và áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\),ta được:

\(VT\ge\left(x+y\right)-xy\ge2-\frac{\left(x+y\right)^2}{4}=2-1=1^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi x = y = 1

8 tháng 1 2021

Đặt \(\dfrac{x}{z}=a;\dfrac{y}{z}=b\).

Theo gt ta có \(a+b\le1\).

BĐT cần chứng minh tương đương:

\(a^2+b^2+\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge \frac{21}{2}\).

Theo bđt AM - GM: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge2;a^2+\dfrac{1}{16}a^2\ge\dfrac{1}{2};b^2+\dfrac{1}{16}b^2\ge\dfrac{1}{2};\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge\dfrac{15}{2}\).

Cộng vế với vế của các bđt trên lại ta có đpcm.

 

NV
8 tháng 2 2021

\(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow ab+bc+ca=2020\)

BĐT trở thành:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)

\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)

\(\Leftrightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020^2}{abc}\)

Ta có: \(\sqrt{2020+a^2}=\sqrt{ab+bc+ca+a^2}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{1}{2}\left(2a+b+c\right)\)

Tương tự:...

\(\Rightarrow\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le2\left(a+b+c\right)\)

\(\Rightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le3\left(a+b+c\right)\)

Nên ta chỉ cần chứng minh:

\(3\left(a+b+c\right)\le\dfrac{2020^2}{abc}=\dfrac{\left(ab+bc+ca\right)^2}{abc}\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\) (hiển nhiên đúng)

Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)

10 tháng 3 2020

c1: phân tích từng cái

c2, nhân x cho (1) y cho 2

sau đs dùng bunhia 

từ x+y=1

=> x^2-xy+y^2...

11 tháng 3 2020

\(VT-VP=\frac{\left(3x^2+7xy+3y^2\right)\left(x-y\right)^2}{3\left(1-x^2\right)\left(1-y^2\right)}\ge0\)

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Lời giải:

$(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=2$

$\Leftrightarrow (x+\sqrt{x^2+1})(x-\sqrt{x^2+1})(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow -(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow 2x+\sqrt{y^2+1}=2\sqrt{x^2+1}-y$

$\Rightarrow (2x+\sqrt{y^2+1})^2=(2\sqrt{x^2+1}-y)^2$
$\Leftrightarrow 4x^2+y^2+1+4x\sqrt{y^2+1}=4(x^2+1)+y^2-4y\sqrt{x^2+1}$

$\Leftrightarrow 4(x\sqrt{y^2+1})+y\sqrt{x^2+1})=3$

$\Leftrightarrow 4Q=3$

$\Leftrightarrow Q=\frac{3}{4}$ 

 

30 tháng 5 2021

Đặt biểu thức trên là A

\(A=x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\)

\(=\left(x-y\right)^2+\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}+2xy\ge2\sqrt{\left(x-y\right)^2\frac{\left(xy-1\right)^2}{\left(x-y\right)^2}}+2xy\)

\(=2\sqrt{\left(xy-1\right)^2}+2xy\)

\(=2\left|xy-1\right|+2xy\)

Áp dụng bđt Cô si 

- Nếu thấy \(xy\ge1\Rightarrow A\ge2xy-2+2xy=4xy-2\ge2\)

- Nếu \(xy< 1\Rightarrow A>-2xy+2+2xy=2\)

Vậy : \(A\ge2\left(đpcm\right)\)

Ta có:Xét hiệu \(x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2-2=\left(x-y\right)^2+\left(\frac{xy-1}{x-y}\right)^2+2\left(xy-1\right)\ge0\)

\(=\left(x-y+\frac{xy-1}{x-y}\right)^2\ge0\)

\(\Rightarrow x^2+y^2+\left(\frac{xy-1}{x-y}\right)^2\ge2\left(đpcm\right)\)