K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2023

Ta sẽ giả sử tổng số đo 3 góc EOM,EON,FOM là 250 độ như đề bài yêu cầu

Cách 1: 

Ta có: \(\widehat{EOM}+\widehat{EON}+\widehat{FOM}+\widehat{FON}=360^0\)

=>\(\widehat{FON}+250^0=360^0\)

=>\(\widehat{FON}=110^0\)

\(\widehat{FON}=\widehat{EOM}\)(hai góc đối đỉnh)

mà \(\widehat{FON}=110^0\)

nên \(\widehat{EOM}=110^0\)

\(\widehat{EOM}+\widehat{EON}=180^0\)(hai góc kề bù)

=>\(\widehat{EON}+110^0=180^0\)

=>\(\widehat{EON}=70^0\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

Cách 2: \(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

=>\(\widehat{EON}+\widehat{FOM}=2\cdot\widehat{EON}\)

\(\widehat{EON}+\widehat{FOM}+\widehat{EOM}=250^0\)

=>\(2\cdot\widehat{EON}+\widehat{EOM}=250^0\)(2)

Ta lại có: \(\widehat{EON}+\widehat{EOM}=180^0\)(hai góc kề bù)(1)

nên từ (1),(2) ta sẽ có hệ phương trình:

\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}=250^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\cdot\widehat{EON}+\widehat{EOM}-\widehat{EON}-\widehat{EOM}=250^0-180^0=70^0\\\widehat{EON}+\widehat{EOM}=180^0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\widehat{EON}=70^0\\\widehat{EOM}=180^0-70^0=110^0\end{matrix}\right.\)

\(\widehat{EON}=\widehat{FOM}\)(hai góc đối đỉnh)

mà \(\widehat{EON}=70^0\)

nên \(\widehat{FOM}=70^0\)

\(\widehat{EOM}=\widehat{FON}\)(hai góc đối đỉnh)

mà \(\widehat{EOM}=110^0\)

nên \(\widehat{FON}=110^0\)

Tổng số đo của bốn góc là 360 độ

Số đo các góc còn lại lần lượt là \(120^0;120^0;60^0\)

Số đo của bốn góc là \(110^0;110^0;70^0;70^0\)

20 tháng 7 2022

làm thế nào vậy bạn

16 tháng 9 2020

Bài 1 :                                                             Bài giải

A B C D O

Ta có : \(\widehat{AOC}=\widehat{BOD}\) ( hai góc đối đỉnh ) mà \(\widehat{AOC}+\widehat{BOD}=100^o\)\(\Rightarrow\text{ }\widehat{AOC}=\widehat{BOD}=\frac{1}{2}\cdot100^o=50^o\)

\(\widehat{AOD}=\widehat{BOC}\) ( hai góc đối đỉnh ) mà \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^o\) 

                                                                                                                        \(\Rightarrow\text{ }\widehat{AOD}+50^o=180^o\text{ }\Rightarrow\text{ }\widehat{AOD}=130^o\)

\(\Rightarrow\text{ }\widehat{AOD}=\widehat{BOC}=130^o\)

16 tháng 9 2020

Bài 2 :                                                Bài giải

N P Q M O

Ta có: 

\(\widehat{MOP}=\widehat{NOQ}\) ( hai góc đối đỉnh )

\(\widehat{NOP}=\widehat{MOQ}\)( hai góc đối đỉnh )

Ta lại có : \(\widehat{MOP}\text{ và }\widehat{NOP}\) là 2 góc kề bù nên \(\widehat{MOP}+\widehat{NOP}=180^o\)

Mà \(\widehat{NOP}=\frac{2}{3}\widehat{MOP}\) nên \(\widehat{MOP}+\frac{2}{3}\widehat{MOP}=180^o\)

                                            \(\Rightarrow\text{ }\frac{5}{3}\widehat{MOP}=180^o\text{ }\Rightarrow\text{ }\widehat{MOP}=108^o\)

                                                                                        \(\Rightarrow\text{ }\widehat{NOP}=\frac{2}{3}\cdot108^o=72^o\)

\(\Rightarrow\text{ }\widehat{MOP}=\widehat{NOQ}=108^o\)

\(\Rightarrow\text{ }\widehat{NOP}=\widehat{MOQ}=72^o\)

19 tháng 6 2021

A O C D B

TH1: \(\widehat{AOC}+\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOC}=\widehat{BOD}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOC}+\widehat{AOD}=230o\)

Mà \(\widehat{AOC}+\widehat{AOD}=180o\) (2 góc kề bù)

=> \(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=50o\\\widehat{AOD}=\widehat{BOC}=130o\end{matrix}\right.\)

TH2: \(\widehat{AOD}+\widehat{BOD}+\widehat{BOC}=230o\)

Mà \(\widehat{AOD}=\widehat{BOC}\) (2 góc đối đỉnh)

=> \(2.\widehat{AOD}+\widehat{BOD}=230o\)

Mà \(\widehat{AOD}+\widehat{BOD}=180o\)

=> \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOC}=50o\\\widehat{BOD}=\widehat{AOC}=130o\end{matrix}\right.\)

vô lí do \(\widehat{AOC}>\widehat{BOC}\)

6 tháng 9 2017

O C D E F

Với \(\widehat{EOD}+\widehat{DOF}+\widehat{FOC}\) = 300( chỉ 1 trong 2 cái )

a) Các cặp góc đổi đỉnh là : 

\(\widehat{COE}\) đối đỉnh \(\widehat{DOF}\)

\(\widehat{EOD}\) đối đỉnh \(\widehat{COF}\)

Hình như đề bạn bị sai rồi 2 đường thẳng chỉ có thể tạo được 2 góc đổi đỉnh mà thôi

b) Với \(\widehat{EOD}+\widehat{DOF}+\widehat{FOC}\) = 300o 

Thì \(\widehat{COE}=360^o-\left(\widehat{EOD}+\widehat{DOF}+\widehat{FOC}\right)\)

\(\widehat{COE}=360^o-300^o\)

\(\widehat{COE}\) = 60o

Với \(\widehat{COE}\)  đối đỉnh \(\widehat{DOF}\) thì => \(\widehat{DOF}\) = 60o

Tiếp tục ta có : \(\Rightarrow\widehat{EOD}+\widehat{DOF}+\widehat{FOC}-\widehat{DOF}=\widehat{EOD}+\widehat{FOC}\)

Vì \(\widehat{EOD}\) đối đỉnh \(\widehat{FOC}\) . Nên \(300^o-60^o=2\left(\widehat{EOD}\right)\) hoặc \(300^o-60^o=2\left(\widehat{FOC}\right)\)

\(240^o=2\left(\widehat{EOD}\right)\) hoặc \(240^o=2\left(\widehat{FOC}\right)\)

Vậy \(\widehat{EOD}\) = 240o : 2

\(\widehat{EOD}\) = 120o

\(\widehat{EOD}\) = 120o tương đương với \(\widehat{FOC}\) = 120o